Environmental Monitoring and Assessment

, Volume 185, Issue 4, pp 3201–3207 | Cite as

Genotoxic effects of the herbicide Roundup® in the fish Corydoras paleatus (Jenyns 1842) after short-term, environmentally low concentration exposure

  • Nédia de Castilhos Ghisi
  • Marta Margarete Cestari


The glyphosate-based herbicide, Roundup®, is one of the most used pesticides worldwide. In concert with the advent of transgenic crops resistant to glyphosate, the use of this pesticide has led to an increase in agricultural yields. The objective of this study was to evaluate the genotoxic effect that the herbicide Roundup® (at a concentration of 6.67 μg/L, corresponding to 3.20 μg/L glyphosate) can have on the fish Corydoras paleatus. Treatment groups were exposed for 3, 6, and 9 days, and effects were analyzed using the piscine micronucleus test (PMT) and comet assay. A group subjected to filtered water only was used as a negative control. The PMT did not show differences between the control and exposed groups for any of the treatment times. In contrast, the comet assay showed a high rate of DNA damage in group exposed to Roundup® for all treatment times, both for blood and hepatic cells. We conclude that for the low concentration used in this research, the herbicide shows potential genotoxic effects. Future research will be important in evaluating the effects of this substance, whose presence in the environment is ever-increasing.


Glyphosate Fish Comet assay Piscine micronucleus test Water pollution 



The authors thank Jeff Muehlbauer for revision of the English language. This research was supported by CAPES (PROEX—Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), entity of the Brazilian Government dedicated to the development of human resources.


  1. Ayllon, F., & Garcia-Vazquez, E. (2000). Introduction of micronuclei and other nuclear abnormalities in European minnow Phoxinus phoxinus and mollie Poecilia latipinna: an assessment of the fish micronucleus test. Mutation Research, 476, 177–186.CrossRefGoogle Scholar
  2. Belpaeme, K., Cooreman, K., & Kirsch-Volders, M. (1998). Development and validation of the in vivo alkaline comet assay for detecting genomic damage in marine flatfish. Mutation Research, 415(3), 167–184.CrossRefGoogle Scholar
  3. Boettcher, M., Grund, S., Keiter, S., Kosmehl, T., Reifferscheid, G., Seitz, N., et al. (2010). Comparison of in vitro and in situ genotoxicity in the Danube River by means of the comet assay and the micronucleus test. Mutation Research, 700, 11–17.CrossRefGoogle Scholar
  4. Canadian Council on Animal Care (2003) Guidelines on: laboratory animal facilities—characteristics, design and development, Ottawa ON Canada, p. 115. Accessed 7 Sep 2011.
  5. Cavalcante, M., Martinez, R., & Sofia, S. (2008). Genotoxic effects of Roundup on the fish Prochilodus lineatus. Mutation Research, 655(1–2), 41–46.CrossRefGoogle Scholar
  6. Çavas, T. (2011). In vivo genotoxicity evaluation of atrazine and atrazine-based herbicide on fish Carassius auratus using the micronucleus test and the comet assay. Food and Chemical Toxicology, 49, 1431–1435.CrossRefGoogle Scholar
  7. Çavas, T., & Könen, S. (2007). Detection of cytogenetic and DNA damage in peripheral erythrocytes of goldfish (Carassius auratus) exposed to a glyphosate formulation using the micronucleus test and the comet assay. Mutagenesis, 22, 263–268.CrossRefGoogle Scholar
  8. Cestari, M. M., Lemos, P. M. M., Oliveira-Ribeiro, C. A., Costa, J. R. M. A., Pelletier, E., Ferraro, M. V. M., et al. (2004). Genetic damage induced by trophic doses of lead in the neotropical fish Hoplias malabaricus (Characiformes, Erythrinidae) as reveled by the comet assay and chromosomal aberrations. Genetic and Molecular Biology, 27(2), 270–274.CrossRefGoogle Scholar
  9. CEE—Comunidade Econômica Européia (1980). Directiva 80/778/CEE relativa à qualidade de águas destinadas ao consumo humano. Jornal Oficial da Comunidade Européia, n. L299, 20 p. Accessed 10 Dec 2009.
  10. Conners, A. J., & Jacobs, J. M. E. (1999). Genetic engineering of crops as potential source of genetic hazard in the human diet. Mutation Research, 443, 223–234.CrossRefGoogle Scholar
  11. Cox, C. (1998). Glyphosate factsheet. Journal of Pesticide Reform, 108(3), 3–17.Google Scholar
  12. Dixon, D. R., Pruski, A. M., Dixon, L. R., & Jha, A. N. (2002). Marine invertebrate eco-genotoxicology: a methodological overview. Mutagenesis, 17, 495–507.CrossRefGoogle Scholar
  13. Ferraro, M. V. M., Fenocchio, A. S., Mantovani, M. S., Cestari, M. M., & Ribeiro, C. A. O. (2004). Mutagenic effects of tributyltin (TBT) and inorganic lead (PbII) on the fish H. malabaricus as evaluated using the comet assay and piscine micronucleous and chromosome aberrations tests. Genetic and Molecular Biology, 27(1), 103–107.CrossRefGoogle Scholar
  14. Ghisi, N. C., Ramsdorf, W. A., Ferraro, M. V. M., Almeida, M. I. M., Ribeiro, C. A. O., & Cestari, M. M. (2010). Evaluation of genotoxicity in Rhamdia quelen (Pisces, Siluriformes) after sub-chronic contamination with Fipronil. Environmental Monitoring and Assessment, 180, 589–599. doi: 10.1007/s10661-010-1807-7.CrossRefGoogle Scholar
  15. Gomez, S. E. (1992). Concentracion letal de oxigeno dissuelto para Corydoras paleatus y Pimelodella laticeps (Pisces, Siluriformes). Revista del Museo Argentino de Ciencias Naturales Bernardino Rivadavia, 7(2), 31–45.Google Scholar
  16. Governmental Decree 518 of the Ministry of Health—Ministerio da Saúde-Portaria MS nº518/2004 publicado no Diário Oficial da União de 26 de março de 2004. Accessed 18 February 2012
  17. Grisolia, C. K. (2002). A comparison between mouse and fish micronucleus test using cyclophosphamide, mitomycin C and various pesticides. Mutation Research, 518, 145–150.CrossRefGoogle Scholar
  18. Guilherme, S., Gaivão, I., Santos, M. A., & Pacheco, M. (2010). European eel (Anguilla anguilla) genotoxic and pro-oxidant responses following short-term exposure to Roundup®—a glyphosate-based herbicide. Mutagenesis, 25, 523–530.CrossRefGoogle Scholar
  19. Hartmann, A., Elhajouji, A., Kiskinis, E., Poetter, F., Martus, H. J., Fjallman, A., et al. (2001). Use of the alkaline comet assay for industrial genotoxicity screening: comparative investigation with the micronucleus test. Food and Chemical Toxicology, 39, 843–858.CrossRefGoogle Scholar
  20. Heddle, J. A. (1973). A rapid in vivo test for chromosome damage. Mutation Research, 18, 187–192.CrossRefGoogle Scholar
  21. Jiraungkoorskul, W., Upatham, E. S., Kruatrachue, M., Sahaphong, S., Vichasri-Grams, S., & Pokethitiyook, P. (2003). Biochemical and histopathological effects of glyphosate herbicide on Nile tilapia (Oreochromis niloticus). Environmental Toxicology, 18(4), 260–267.CrossRefGoogle Scholar
  22. Klobucar, G. I. V., Pavlica, M., Erben, R., & Papes, D. (2003). Application of the micronucleus and comet assays to mussel Dreissena polymorpha haemocytes for genotoxicity monitoring of freshwater environments. Aquatic Toxicology, 64, 15–23.CrossRefGoogle Scholar
  23. Kobayashi, H., Sugiyama, C., Morikawa, Y., Hayashi, M., & Sofuni, T. (1995). A comparison between manual microscopic analysis and computerized image analysis in the single cell gel electrophoresis. Mammalian Mutagenicity Study Group Communications, 3, 103–115.Google Scholar
  24. Marc, J., Mulner-Lorillon, O., & Bellé, R. (2004). Glyphosate-based pesticides affect cell cycle regulation. Biology of the Cell, 96, 245–249.CrossRefGoogle Scholar
  25. Molinari, M. (2000). Cell cycle checkpoints and their inactivation in human cancer. Cell Proliferation, 33, 261–274.CrossRefGoogle Scholar
  26. Peruzzo, P. J., Porta, A. A., & Ronco, A. E. (2008). Levels of glyphosate in surface waters, sediments and soils associated with direct sowing soybean cultivation in north pampasic region of Argentina. Environmental Pollution, 156, 61–66.CrossRefGoogle Scholar
  27. R Development Core Team (2011). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  28. Rossi, S. C., Silva, M. D. S., Piancini, L. D. S., Ribeiro, C. A. O., Cestari, M. M., & Assis, H. C. S. (2011). Sublethal effects of waterborne herbicides in tropical freshwater fish. Bulletin of Environmental Contamination and Toxicology, 87, 603–607. doi: 10.1007/s00128-011-0397-6.CrossRefGoogle Scholar
  29. Russo, C., Rocco, L., Morescalchi, M. A., & Stingo, V. (2004). Assessment of environments stress by the micronucleus test and the comet assay on the genome of teleost populations from two natural environments. Ecotoxicology and Environmental Safety, 57, 168–174.CrossRefGoogle Scholar
  30. Sasaki, Y. F., Tsuda, S., Izumiyama, F., & Nishidate, E. (1997). Detection of chemically induced DNA lesions in multiple mouse organs (liver, lung, spleen, kidney, and bone marrow) using the alkaline single cell gel electrophoresis (comet) assay. Mutation Research, 388, 33–44.CrossRefGoogle Scholar
  31. Schmid, W. (1975). The micronucleus test. Mutation Research, 31, 9–15.CrossRefGoogle Scholar
  32. Speit, G., & Hartmann, A. (1999). The comet assay (single-cell gel test), a sensitive genotoxicity test for the detection of DNA damage and repair. In D. S. Henderson (Ed.), Methods in molecular biology DNA repair protocols—eukaryotic systems (pp. 203–211). Totowa: Hum Press. 113.Google Scholar
  33. Stewart, Z. A., Westfall, M. D., & Pietenpol, J. A. (2003). Cell-cycle dysregulation and anticancer therapy. Trends Pharmacology Sciences, 24, 139–145.CrossRefGoogle Scholar
  34. Struger, J., Thompson, D., Staznik, B., Martin, P., McDaniel, T., & Marvin, C. (2008). Occurrence of glyphosate in surface waters of southern Ontario. Bulletin of Environmental Contamination Toxicology, 80, 378–384. doi: 10.1007/s00128-008-9373-1.CrossRefGoogle Scholar
  35. Szarek, J., Siwicki, A., Andrzejewska, A., Terech-Majewska, E., & Banaszkiewicz, T. (2000). Effects of the herbicide Roundup™ on the ultrastructural pattern of hepatocytes in carp (Cyprinus carpio). Marine Environmental Research, 50, 263–266.CrossRefGoogle Scholar
  36. United States Environmental Protection Agency. (2009). National primary drinking water regulations, EPA 816-F-09-004. Accessed 28 June 2011.
  37. Vasquez, M. Z. (2010). Combining the in vivo comet and micronucleus assays: a practical approach to genotoxicity testing and data interpretation. Mutagenesis, 25(2), 187–199.CrossRefGoogle Scholar
  38. ZHEW (2002). Monitoring network in fruit plantations and investigation of drainage water. 1996–2001. Zuiveringsschap Hollandse Eilanden en Waarden, Dordrecht (in Dutch). @@@ As cited in Horth et al. 2004. Survey of glyphosate in groundwaters and surface waters in Europe. Final update report 2003/2004, p. 71.Google Scholar
  39. Zorita, I., Ortiz-Zarragoitia, M., Apraiz, I., Cancio, I., Orbea, A., Soto, M., et al. (2008). Assessment of biological effects of environmental pollution along the NW Mediterranean Sea using red mullets as sentinel organisms. Environmental Pollution, 153(1), 157–168.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Nédia de Castilhos Ghisi
    • 1
  • Marta Margarete Cestari
    • 2
  1. 1.Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais (PEA)Universidade Estadual de MaringáMaringáBrazil
  2. 2.Departamento de GenéticaUniversidade Federal do ParanáCuritibaBrazil

Personalised recommendations