Skip to main content

Advertisement

Log in

Measuring and modeling ammonium adsorption by calcareous soils

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The aim of this study was assessment of ammonium (NH +4 ) adsorption isotherms in some agricultural calcareous soils and modeling of that by using the mechanistic exchange model. Ten surface soils (0–30 cm) were collected from areas covered with different land uses in Hamedan, western Iran. Isotherm experiments were carried out by concentrations of NH +4 prepared from NH4Cl salt (0, 10, 20, 30, 40, 50, 100, and 150 mg NH +4  l−1) in presence of 0.01 M CaCl2 solution. The empirical models including simple adsorption isotherm and Freundlich equations were fitted well to the experimental data. The average amounts of adsorbed NH +4 in studied soils varied from 8.95 to 35.23 %. Adsorption percentage indicated positive correlation with pH, cation-exchange capacity (CEC), equivalent calcium carbonate, and clay content and had negative correlation with sand content. In order to predict and model NH +4 adsorption, cation-exchange model in PHREEQC program was used. The model could simulate the NH +4 adsorption very well in all studied soils. The values of CEC played the major role in modeling of NH +4 adsorption in this study indicating that cation-exchange process was the major mechanism controlling NH +4 adsorption in studied soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aber, J., McDowell, W., Nadelhoffer, K., Alison, M., Berntson, G., Kamakea, M., et al. (1998). Nitrogen saturation in temperate forest ecosystems. Bioscience, 48, 921–934.

    Article  Google Scholar 

  • Amokrane, A., Comel, C., & Veron, J. (1997). Landfill leachates pretreatment by coagulation–flocculation. Water Research, 31(11), 2775–2782.

    Article  CAS  Google Scholar 

  • Appelo, C. A. J., & Postma, D. (1993). Geochemistry, groundwater and pollution. Rotterdam: A.A. Balkema.

    Google Scholar 

  • Avnimelech, Y., & Laher, M. (1977). Ammonium volatilization from soils: equilibrium considerations. Soil Science Society of American Journal, 41, 1080–1084.

    Article  CAS  Google Scholar 

  • Aydin, F., & Kuleyin, A. (2011). The effect of modification and initial concentration on ammonia removal from leachate by zeolite. World Academy of Science, Engineering and Technology, 78, 293–296.

    Google Scholar 

  • Baethgen, W. E., & Alley, M. M. (1989). A manual colorimetric procedure for measuring ammonium nitrogen in soil and plant Kjeldahl digests. Communications in Soil Science and Plant Analysis, 20(9&10), 961–969.

    Article  CAS  Google Scholar 

  • Baeyens, B., & Bradbury, M. H. (1997). A mechanistic description of Ni and Zn sorption on Na-montmorillonite. Part I: titration and sorption measurements. Journal of Contaminant Hydrology, 27, 199–222.

    Article  CAS  Google Scholar 

  • Berner, R. A. (1976). Inclusion of adsorption in the modeling of early diagenesis. Earth and Planetary Science Letters, 29, 333–340.

    Article  Google Scholar 

  • Bethke, C. M., & Brady, P. V. (2000). How the K d approach undermines ground water cleanup. Ground Water, 38, 435–443.

    Article  CAS  Google Scholar 

  • Boatman, C. D., & Murray, J. W. (1982). Modeling exchangeable NH +4 adsorption in marine sediments: process and controls of adsorption. Limnology and Oceanography, 27, 99–110.

    Article  CAS  Google Scholar 

  • Buss, S. R., Herbert, A. W., Morgan, P., Thornton, S. F., & Smith, W. N. (2004). A review of ammonium attenuation in soil and groundwater. Quarterly Journal of Engineering Geology and Hydrogeology, 37, 347–359.

    Article  CAS  Google Scholar 

  • Demir, A., Debik, E., & Gunay, A. (1998). Ammonium removal from aqueous solution by ion exchange using packed bed natural zeolite. Water SA Journal, 28(3), 329–335.

    Google Scholar 

  • Du, Q., Liu, S., Cao, Z., & Wang, Y. (2005). Ammonia removal from aqueous solution using natural Chinese clinoptilolite. Separation and Purification Technology, 44, 229–234.

    Article  CAS  Google Scholar 

  • Dzombak, D. A., & Morel, F. (1990). Surface complexation modeling: hydrous ferric oxide. New York: Wiley Interscience.

    Google Scholar 

  • Elmaci, O. L., Secer, M., Erdemir, O., & Iqbal, N. (2002). Ammonium fixation properties of some arable soils from the Agean region of Turkey. European Journal of Agronomy, 17, 199–208.

    Article  CAS  Google Scholar 

  • Fen, L. B., Datcha, J. E., & Wo, E. (1982). Substitution of ammonium and potassium for added calcium in reduction of ammonia loss from surfaced-applied urea. Soil Science Society of American Journal, 46, 771–776.

    Article  Google Scholar 

  • Gaines, G. L., & Thomas, H. C. (1953). Adsorption studies on clay minerals. II. A formulation of the thermodynamics of exchange adsorption. Journal of Chemical Physics, 21, 714–718.

    Article  CAS  Google Scholar 

  • Gaspard, M., Neveu, A., & Martin, G. (1983). Clinoptilolite in drinking water treatment for NH +4 removal. Water Research, 17(3), 279–288.

    Article  CAS  Google Scholar 

  • Goldberg, S. (1997). Reactions of boron with soils. Plant and Soil, 193, 35–48.

    Article  CAS  Google Scholar 

  • Gurovic, E., & Avnimelech, Y. (1977). The distribution of ammonium ion from a localized source into the soil. Plant and Soil, 46, 101–111.

    Article  Google Scholar 

  • Ivanova, E., Karsheva, M., & Koumanova, B. (2010). Adsorption of ammonium ions onto natural zeolite. Journal of the University of Chemical Technology and Metallurgy, 45(3), 295–302.

    CAS  Google Scholar 

  • Khanna, P. K. (1981). Leaching of nitrogen from terrestrial ecosystems-patterns, mechanisms and ecosystem responses. In F.E. Clark, & T. Rosswall (Eds.) Terrestrial nitrogen cycles. Processes, ecosystem strategies and management impacts. Ecological Bulletin (Stockholm) 33:343–352

  • Koretsky, C. (2000). The significance of surface complexation reactions in hyrologic systems: a geochemist's perspective. Journal of Hydrology, 230, 127–171.

    Article  CAS  Google Scholar 

  • Li, X. Z., Zhao, Q. L., & Hao, X. D. (1999). Ammonium removal from landfill leachate by chemical precipitation. Waste Management, 19(6), 409–415.

    Article  CAS  Google Scholar 

  • Lin, S. H., & Wu, C. L. (1996). Removal of nitrogenous compounds from aqueous solution by ozonation and ion exchange. Water Research, 30(8), 1851–1857.

    Article  CAS  Google Scholar 

  • Lumbanraja, J., & Evangelou, V. P. (1994). Adsorption-desorption of potassium and ammonium at low cation concentrations in three Kentucky subsoils. Soil Science, 157, 269–278.

    Article  CAS  Google Scholar 

  • Matschonat, G., & Matzner, E. (1996). Soil chemical properties affecting NH +4 sorption in forest soils. Journal of Plant Nutrition and Soil Science, 159, 505–511.

    Article  CAS  Google Scholar 

  • Murray, J. W., Grundmanis, V., & Smethie, W. M. (1978). Interstitial water chemistry in the sediments of Saanich Inlet. Gcochimica et Cosmochimica Acta, 42, 1011–1026.

    Article  CAS  Google Scholar 

  • Parkhurst, D. L., & Appelo, C. A. J. (1999). User's Guide to PHREEQC (Version 2)-A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. United States Geological Survey, Water Resources Investigations Report 99-4259, Washington, DC, p. 326.

  • Phillips, I. R. (1999). Nitrogen availability and sorption under alternating waterlogged and drying conditions. Communications in Soil Science and Plant Analysis, 30, 1–20.

    Article  CAS  Google Scholar 

  • Raaphorst, W. V., & Malschaert, J. F. P. (1996). Ammonium adsorption in superficial North Sea sediments. Continental Shelf Research, 16, 1415–1435.

    Article  Google Scholar 

  • Ritter, E. (2005). Litter decomposition and nitrogen mineralization in newly formed gaps in a Danish beech (Fagus sylvatica) forest. Soil Biology and Biochemistry, 37, 1237–1247.

    Article  CAS  Google Scholar 

  • Rosenfeld, J. K. (1979). Ammonium adsorption in nearshore anoxic sediments. Limnology and Oceanography, 24, 356–364.

    Article  CAS  Google Scholar 

  • Rowell, D. L. (1994). Soil science: methods and applications. Harlow: Longman Group.

    Google Scholar 

  • Singh, G., & Prasad, B. (1997). Removal of ammonium from coke plant wastewater by using synthetic zeolite. Water Environment Research, 69(2), 157–161.

    Article  CAS  Google Scholar 

  • Sollins, P., Robertson, G. P., & Uehara, G. (1988). Nutrient mobility in variable and permanent charge soils. Biogeochemistry, 6, 181–199.

    Article  Google Scholar 

  • Suess, E., & Muller, P. J. (1981). Interaction between K+ and NH +4 in marine pore solutions and sediments. Geochimica et Cosmochimica Acta, 45, 1581–1602.

    Article  Google Scholar 

  • Tam, N. F. Y., & Wong, Y. S. (1995). Mangrove soils as sinks for wastewater-borne pollutants. Hydrobiologia, 295, 231–241.

    Article  CAS  Google Scholar 

  • Thompson, T. L., & Blackmer, A. M. (1992). Quantity-intensity relationships of soil ammonia in long-term rotation plots. Soil Science Society of American Journal, 56, 494–498.

    Article  Google Scholar 

  • Wang, F. L., & Alva, A. K. (2000). Ammonium adsorption and desorption in sandy soils. Soil Science Society of American Journal, 64, 1669–1674.

    Article  CAS  Google Scholar 

  • Wen, D., Ho, Y. S., Xie, S., & Tang, X. (2006). Mechanism of the adsorption of ammonium ions from aqueous solution by a Chinese natural zeolite. Separation Science and Technology, 41, 3485–3498.

    Article  CAS  Google Scholar 

  • Westall, J. (1980). Chemical equilibrium including adsorption on charged surfaces. In M. C. Kavanaugh & J. O. Leckie (Eds.), Particulates in Water (pp. 33–41). Adv. Chem. Ser. no. 189, Am. Chem. Soc., Washington, DC, USA.

  • Yu, X. F., Zhang, Y. X., Zou, Y. C., Zhao, H. M., Lu, X. G., & Wang, G. P. (2011). Adsorption and desorption of ammonium in wetland soils subject to freeze-thaw cycles. Pedosphere, 21(2), 251–258.

    Article  CAS  Google Scholar 

  • Zhang, Y. Z., Huang, S. H., Wan, D. J., Huang, Y. X., Zhou, W. J., & Zou, Y. B. (2007). Fixed ammonium content and maximum capacity of ammonium fixation in major types of tillage soils in Hunan province, China. Agricultural Science of China, 6(4), 466–474.

    Article  CAS  Google Scholar 

  • Zhu, W. L., Cui, L. H., Ouyang, Y., Long, C. F., & Tang, X. D. (2011). Kinetic adsorption of ammonium nitrogen by substrate materials for constructed wetlands. Pedosphere, 21(4), 454–463.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Jalali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ranjbar, F., Jalali, M. Measuring and modeling ammonium adsorption by calcareous soils. Environ Monit Assess 185, 3191–3199 (2013). https://doi.org/10.1007/s10661-012-2782-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-2782-y

Keywords

Navigation