Skip to main content
Log in

The residues and environmental risks of multiple veterinary antibiotics in animal faeces

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

To understand the residues and ecological risks of veterinary antibiotics (VAs) in animal faeces from concentrated animal feeding operations in northeastern China, 14 VAs were identified by high performance liquid chromatography, and the preliminary risks of six antibiotics were assessed using the hazard quotient (HQ). The investigated VAs occurred in 7.41 to 57.41 % of the 54 samples, and the levels ranged from 0.08 to 56.81 mg kg−1. Tetracyclines were predominant with a maximum level of 56.81 mg kg−1 mostly detected in pig faeces. Sulfonamides were common and detected with the highest concentration of 7.11 mg kg−1. Fluoroquinolones were more widely detected in chicken faeces rather than in pig or cow faeces, which contained the dominant antibiotic enrofloxacin. In comparison, the residue of tylosin was less frequently found. The risk evaluations of the six antibiotics revealed that tetracyclines, especially oxytetracycline, displayed the greatest ecological risk because of its high HQ value of 15.75. The results of this study imply that multiple kinds of VAs were jointly used in animal feeding processes in the study area. These medicine residues in animal faeces may potentially bring ecological risks if the animal manure is not treated effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • A.H.I., Animal Health Institute (2002). Available from: http://www.ahi.org. Accessed 25 May 2008.

  • Arikan, O.A., Mulbry, W., & Rice C. (2009). Management of antibiotic residues from agricultural sources: Use of composting to reduce chlortetracycline residues in beef manure from treated animals. Journal of Hazardous Materials, 164(2–3), 483–489

    Google Scholar 

  • Arikan, O. A., Sikora, L. J., Mulbry, W., Khan, S. U., & Foster, G. D. (2007). Composting rapidly reduces levels of extractable oxytetracycline in manure from therapeutically treated beef calves. Bioresource Technology, 98(1), 169–176.

    Article  CAS  Google Scholar 

  • Boxall, A. B. A., Kolpin, D. W., Halling-Sørensen, B., & Tolls, J. (2003). Are veterinary medicines causing environmental risks? Environmental Science & Technology, 37(15), 286A–294A.

    Article  CAS  Google Scholar 

  • Campagnolo, E. R., Johnson, K. R., Karpati, A., Rubin, C. S., Kolpin, D. W., Meyer, M. T., et al. (2002). Antimicrobial residues in animal waste and water resources proximal to large-scale swine and poultry feeding operations. Science of the Total Environment, 299(1–3), 89–95.

    Article  CAS  Google Scholar 

  • Chen, H., Dong, Y. H., Wang, H., An, Q., Zhang, J. Q., & Liu, X. C. (2008). Residual characteristics of sulfanilamide in animal feces in Jiangsu Province. Journal of Agro-Environment Science, 27(1), 0385–0389 (in Chinese).

    Google Scholar 

  • Commission of European Communities. (1992). Commission directive 92/18/EEC of 20 March 1992 modifying the Annex to Council Directive 81/852/EEC on the approximation of the laws of Member States relating to analytical, pharmacotoxicological and clinical standards and protocols in respect of the testing of veterinary medical products. Official Journal of the European Communities, L97, 1.

    Google Scholar 

  • Department of Rural Surveys, National Bureau of Statistics. (2007). China agricultural statistic year book. Beijing: China Statistics Press.

    Google Scholar 

  • Department of Rural Surveys, National Bureau of Statistics. (2009). China agricultural statistic year book. Beijing: China Statistics Press.

    Google Scholar 

  • Dolliver, H., Gupta, S., & Noll, S. (2008). Antibiotic degradation during manure composting. Jounal of Environmental Quality, 37, 1245–1253.

    Article  CAS  Google Scholar 

  • European Agency for the Evaluation of Medicinal Products (EMEA). (2006). Guideline on environmental impact assessment for veterinary medicinal products. In support of the VICH guidelines GL6 and GL38, 38–39.

  • Ferrari, B., Paxeus, N., Giudice, R. L., Pollio, A., & Garric, J. (2003). Ecotoxicological impact of pharmaceuticals found in treated wastewaters: study of carbamazepine, clofbric acid, and diclofenac. Ecotoxicology and Environmental Safety, 55(3), 359–370.

    Article  CAS  Google Scholar 

  • Halling-Sørensen, B. (2000). Algal toxicity of antibacterial agents used in intensive farming. Chemosphere, 40(7), 731–739.

    Article  Google Scholar 

  • Halling-Sørensen, B., Nielsen, S. N., Lanzky, P. F., Ingerslev, F., Holten Lützhøft, H. C., & Jørgense, S. E. (1998). Occurrence, fate and effects of pharmaceutical substances in the environment—a review. Chemosphere, 36(2), 357–393.

    Article  Google Scholar 

  • Hamscher, G., Sczesny, S., Höper, H., & Nau, H. (2002). Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Analytical Chemistry, 74(7), 1509–1518.

    Article  CAS  Google Scholar 

  • Heuer, H., Solehati, Q., Zimmerling, U., Kleineidam, K., Schloter, M., Müller, T., et al. (2011). Accumulation of sulfonamide resistance genes in arable soils due to repeated application of manure containing sulfadiazine. Applied and Environmental Microbiology, 77, 2527–2530.

    Article  CAS  Google Scholar 

  • Hu, X. G., Luo, Y., Zhou, Q. X., & Xu, L. (2008). Determination of thirteen antibiotics residues in manure by solid phase extraction and high performance liquid chromatography. Chinese Journal of Analytical Chemistry, 36(9), 1162–1166 (in Chinese).

    Article  CAS  Google Scholar 

  • Hu, X. G., Zhou, Q. X., & Luo, Y. (2010). Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China. Environmental Pollution, 158(9), 2992–2998.

    Article  CAS  Google Scholar 

  • Jacobsen, A. M., & Halling-Sørensen, B. (2006). Multi-component analysis of tetracyclines, sulfonamides and tylosin in swine manure by liquid chromatography–tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 384(5), 1164–1174.

    Article  CAS  Google Scholar 

  • Karcı, A., & Balcıoğlu, I. A. (2009). Investigation of the tetracycline, sulfonamide, and fluoroquinolone antimicrobial compounds in animal manure and agricultural soils in Turkey. Science of the Total Environment, 407(16), 4652–4664.

    Article  Google Scholar 

  • Kemper, N. (2008). Veterinary antibiotics in the aquatic and terrestrial environment. Ecological Indicators, 8, 1–13.

    Article  CAS  Google Scholar 

  • Kim, K. R., Owens, G., Kwon, S. I., So, K. H., Lee, D. B., & Ok, Y. S. (2011). Occurrence and environmental fate of veterinary antibiotics in the terrestrial environment. Water Air & Soil Pollution, 214(1–4), 163–174.

    Article  CAS  Google Scholar 

  • Kleineidam, K., Sharma, S., Kotzerke, A., Heuer, H., Thiele-Bruhn, S., Smalla, K., et al. (2010). Effect of sulfadiazine on abundance and diversity of denitrifying bacteria by determining nirK and nirS genes in two arable soils. Microbial Ecology, 60(4), 703–707.

    Article  CAS  Google Scholar 

  • Kong, W. D., Zhu, Y. G., Fu, B. J., Marschner, P., & He, J. Z. (2006). The veterinary antibiotic oxytetracycline and Cu influence functional diversity of the soil microbial community. Environmental Pollution, 143(1), 129–137.

    Article  CAS  Google Scholar 

  • Kulshrestha, A., Giese, R. F., & Aga, D. S. (2004). Investigating the molecular interactions of oxytetracycline in clay and organic matter: insights on factors affecting its mobility in soil. Environmental Science & Technology, 38(15), 4097–4105.

    Article  CAS  Google Scholar 

  • Kumar, K., Gupta, S. C., Chander, Y., & Singh, A. K. (2005). Antibiotic use in agriculture and their impact on the terrestrial environment. Advances in Agronomy, 87, 1–54.

    Article  CAS  Google Scholar 

  • Li, W., Li, Y. X., Zhang, F. S., Lin, C. Y., Xiong, X., & Zhang, Z. (2007). The spatial and temporal distribution features of animal production in three Northeast Provinces and the impacts of manure nutrients on the local environment. Journal of Agro-Environment Science, 26(6), 2350–2357 (in Chinese).

    CAS  Google Scholar 

  • Luo, Y., Xu, L., Rysz, M., Wang, Y. Q., Zhang, H., & Alvarez, P. J. J. (2011). Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe River Basin, China. Environmental Science & Technology, 45(5), 1827–1833.

    Article  CAS  Google Scholar 

  • Martínez-Carballo, E., González-Barreiro, C., Scharf, S., & Gans, O. (2007). Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria. Environmental Pollution, 148(2), 570–579.

    Article  Google Scholar 

  • McEwen, S. A., & Fedorka-Cray, P. J. (2002). Antimicrobial use and resistance in animals. Clinical Infectious Diseases, 34(supplement 3), S93–S106.

    Article  CAS  Google Scholar 

  • Mellon, M., Benbrook, C., & Benbrook, K. L. (2001) Hogging it!: estimates of antimicrobial abuse in livestock. Union of concerned scientists, UCS Publications, Cambridge, MA, USA. Available from: http://www.ucsusa.org/publications/food_and_environment/antibiotics_and_food/hogging-it-estimates-of-antimicrobial-abuse-in-livestock.html. Accessed 4 June 2012.

  • Motoyama, M., Nakagawa, S., Tanoue, R., Sato, Y., Nomiyama, K., & Shinohara, R. (2011). Residues of pharmaceutical products in recycled organic manure produced from sewage sludge and solid waste from livestock and relationship to their fermentation level. Chemosphere, 84(4), 432–438.

    Article  CAS  Google Scholar 

  • Pan, X., Qiang, Z. M., Ben, W. W., & Chen, M. X. (2011). Residual veterinary antibiotics in swine manure from concentrated animal feeding operations in Shandong Province, China. Chemosphere, 84(5), 695–700.

    Article  CAS  Google Scholar 

  • Park, S., & Choi, K. (2008). Hazard assessment of commonly used agricultural antibiotics on aquatic ecosystems. Ecotoxicology, 17(6), 526–538.

    Article  CAS  Google Scholar 

  • Pils, R. V., & Lairo, D. A. (2007). Sorption of tetracycline and chlortetracycline on K-and Ca-saturated soil clays, humic substances, and clay-humic complexes. Environmental Science & Technology, 41(6), 1928–1933.

    Article  CAS  Google Scholar 

  • Rong, X. Y., & Liang, Y. (2008). Examples analysis of validation of analytical methods for testing the non-residual solvents impurities by HPLC. China Licensed Pharmacist, 5(11), 36–40 (in Chinese).

    Google Scholar 

  • Sarmah, A. K., Meyer, M. T., & Boxall, A. B. A. (2006). A global perspective on the use, sales, exposure pathways, ocurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere, 65(5), 725–759.

    Article  CAS  Google Scholar 

  • Spaepen, K. R. I., Van Leemput, L. J. J., Wislocki, P. G., & Verschueren, C. (1997). A uniform procedure to estimate the predicted environmental concentration of the residues of veterinary medicines in soil. Environmental Toxicology and Chemistry, 16(9), 1977–1982.

    Article  CAS  Google Scholar 

  • Thiele-Bruhn, S., & Beck, I. C. (2005). Effects of sulfonamide and tetracycline antibiotics on soil microbial activity and microbial biomass. Chemosphere, 59(4), 457–465.

    Article  CAS  Google Scholar 

  • Vaclavik, E., Halling-Sørensen, B., & Ingerslev, F. (2004). Evaluation of manometric respiration tests to assess the effects of veterinary antibiotics in soil. Chemosphere, 56(7), 667–676.

    Article  CAS  Google Scholar 

  • Watanabe, N., Bergamaschi, B. A., Loftin, K. A., Meyer, M. T., & Harter, T. (2010). Use and environmental occurrence of antibiotics in freestall dairy farms with manured forage fields. Environmental Science & Technology, 44(17), 6591–6600.

    Article  CAS  Google Scholar 

  • Winckler, C., & Grafe, A. (2000). Abschatzung des stoffeintrags in Böden durch tierarzneimittel und pharmakologisch wirksame futterzusatzstoffe. UBA-Texte 44/00, Berlin.

  • Winckler, C., Engels, H., & Hund-Rinke, K. (2003). Verhalten von tetracyclinen und anderen veterinärantibiotika in wirtschaftsdünger und Boden. UFOPLAN, 200 73 248 Berlin.

  • Xu, W. H., Zhang, G., Li, X. D., Zou, S. C., Li, P., Hu, Z. H., et al. (2007). Occurrence and elimination of antibiotics at four sewage treatment plants in the Pearl River Delta (PRD), South China. Water Research, 41(19), 4526–4534.

    Article  CAS  Google Scholar 

  • Zhang, H. M., Zhang, M. K., & Gu, G. P. (2008). Residues of tetracyclines in livestock and poultry manures and agricultural soils from North Zhejiang Province. Journal of Ecology and Rural Environment, 24(3), 69–73 (in Chinese).

    Google Scholar 

  • Zhao, L., Dong, Y. H., & Wang, H. (2010). Residues of veterinary antibiotics in manure from feedlot livestocks in eight provinces of China. Science of The Total Environment, 408(5), 1069–1075.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research was funded through the Natural Science Foundation of China (no. 20977010), Special Fund for Environmental Protection Research in the Public Interest (200909042) and the Fundamental Research Funds for the Central Universities (2009SD-19).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-xia Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Yx., Zhang, Xl., Li, W. et al. The residues and environmental risks of multiple veterinary antibiotics in animal faeces. Environ Monit Assess 185, 2211–2220 (2013). https://doi.org/10.1007/s10661-012-2702-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-2702-1

Keywords

Navigation