Environmental Monitoring and Assessment

, Volume 185, Issue 2, pp 1825–1831 | Cite as

Heavy metal risk assessment for potatoes grown in overused phosphate-fertilized soils

  • Mehrdad CheraghiEmail author
  • Bahareh Lorestani
  • Hajar Merrikhpour
  • Nasim Rouniasi


The long-term application of phosphate fertilizers on vegetable production fields has raised concerns about the potential health risks of heavy metal contamination of crops grown on contaminated soils in the Hamadan province, western Iran. This study found that long-term fertilizer use led to a growing accumulation of heavy metals in soils. High concentrations of elemental As, Cd, Cr, Cu, Pb, and Zn were found in potatoes sampled from overused phosphate-fertilized soils, which increased the daily intake of metals in food. However, the ingestion of potatoes from soils affected by phosphate fertilizers posed a low health risk when compared with the health risk index of <1 for heavy metals. Nevertheless, heavy metal concentrations should be periodically monitored in vegetables grown in these soils. It would also be beneficial to implement effective remediation technologies to minimize possible impacts on human health.


Health risk Heavy metals Phosphate fertilizer Potato Iran 


  1. Adriano, D. C. (1992). Biogeochemistry of trace metals (p. 513). Boca Raton: Advance in Trace Substances Research.Google Scholar
  2. Agrawal, G. D. (1999). Diffuse agricultural water pollution in India. Water Science and Technology, 39(3), 33–47.CrossRefGoogle Scholar
  3. Allen, S. E., Grimshaw, H. M., & Rowland, A. P. (1986). Chemical analysis. In P. D. Moore & S. B. Chapman (Eds.), Methods in plant ecology (pp. 285–344). London: Blackwell Scientific.Google Scholar
  4. Alloway, B. (1995). Heavy metals in soils. London: Blackie Academic Professional.CrossRefGoogle Scholar
  5. Arora, M., Kiran, B., Rani, S., Rani, A., Kaur, B., & Mittal, N. (2008). Heavy metal accumulation in vegetables irrigated with water from different sources. Food Chemistry, 111(4), 811–815.CrossRefGoogle Scholar
  6. Bonierbale, M., Amoros, W., Burgos, G., Salas, E., & Juarez, H. (2007). Prospects for enhancing the nutritional value of potato by plant breeding. African Potato Association Conference Proceedings, 7(2), 26–46.Google Scholar
  7. Cajuste, L. J., Garcia, O. C., & Cruz, D. J. (2006). Distribution and availability of heavy metals in raw and acidulated phosphate rock-amended soils. Communications in Soil Science and Plant Analysis, 37(5), 2541–2552.CrossRefGoogle Scholar
  8. Chary, N. S., Kamala, C. T., & Raj, D. S. (2008). Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer. Ecotoxicology and Environment Safety, 69(3), 513–524.CrossRefGoogle Scholar
  9. Chen, W., Chang, A. C., & Wu, L. (2007). Assessing long-term environmental risks of trace elements in phosphate fertilizers. Ecotoxicology and Environment Safety, 67(2), 48–58.CrossRefGoogle Scholar
  10. Cheraghi, M., Lorestani, B., & Merikhpour, H. (2011). Investigation of the effects of phosphate fertilizer application on the heavy metal content in agricultural soils with different cultivation patterns. Biological Trace Element Research. doi: 10.1007/s12011-011-9161-3.
  11. D'Mello, J. P. F. (2003). Food safety: Contaminants and toxins (p. 480). Wallingford: CABI Publishing.CrossRefGoogle Scholar
  12. Dogheim, S. M., Ashraf, E. M. M., Gad Alla, S. A., Khorshid, M. A., & Fahmy, S. M. (2004). Pesticides and heavy metals levels in Egyptian leafy vegetables and some aromatic medicinal plants. Food Additives and Contaminants, 21(4), 323–330.CrossRefGoogle Scholar
  13. Dong, W. Q. R., Cui, Y., & Liu, X. (2001). Instances of soil and crop heavy metal contamination in China. Soil and Sediment Contamination, 10(5), 497–510.CrossRefGoogle Scholar
  14. Duruibe, J. O., Ogwuegbu, M. O. C., & Egwurugwu, J. N. (2007). Heavy metal pollution and human biotoxic effects. International Journal of Physical Science, 2(5), 112–118.Google Scholar
  15. Fries, G. F. (1995). A review of the significance of animal food products as potential pathways of human exposures to dioxins. Journal of Animal Science, 73(6), 1639–1650.Google Scholar
  16. Ge, K. Y. (1992). The status of nutrient and meal of Chinese in the 1990s (pp. 415–434). Beijing: Beijing People’s Hygiene.Google Scholar
  17. Gopalani, M., Shahare, M., Ramteke, D. S., & Wate, S. R. (2007). Heavy metal content of potato chips and biscuits from Nagpur City, India. Bulletin of Environmental Contamination and Toxicology, 79(9), 384–387.CrossRefGoogle Scholar
  18. Graham, R. D., Welch, R. M., Saunders, D. A., Ortiz-Monasterio, I., Bouis, H. E., & Bonierbale, M. (2006). Nutritious subsistence food systems. Advances in Agronomy, 92(3), 1–74.Google Scholar
  19. Johnston, A. E., & Jones, K. C. (1992). The cadmium issue long-term changes in the cadmium content of soils and the crops grown on them. International workshop on phosphate fertilizers and the environment (pp. 255–269). Tampa: International Fertilizer Development Center.Google Scholar
  20. Khan, S., Cao, Q., Zheng, Y. M., Huang, Y. Z., & Zhu, Y. G. (2008). Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environmental Pollution, 152(3), 686–692.CrossRefGoogle Scholar
  21. Kumar, N., Hiren Soni, J. I., & Kumar, R. N. (2007). Characterization of heavy metals from market vegetables using inductive coupled plasma analyzer. Journal of Applied Sciences and Environmental Management, 11(3), 75–79.Google Scholar
  22. Lim, H. S., Lee, J. S., Chon, H. T., & Sager, M. (2008). Heavy metal contamination and health risk assessment in the vicinity of the abandoned Songcheon Au–Ag mine in Korea. Journal of Geochemical Exploration, 96(2–3), 223–230.CrossRefGoogle Scholar
  23. Lin, C. G. (1996). Soil pollution and its control (in Chinese) (pp. 44–58). Beijing: Chinese Agricultural.Google Scholar
  24. Liu, W. H., Zhao, J. Z., Ouyang, Z. Y., Söderlund, L., & Liu, G. H. (2005). Impacts of sewage irrigation on heavy metal distribution and contamination in Beijing, China. Environment International, 31(4), 805–812.CrossRefGoogle Scholar
  25. Lu, R. K. (2000). Soil and agricultural chemistry analysis (in Chinese) (pp. 321–330). Beijing: Chinese Agricultural.Google Scholar
  26. Markert, B. (1996). Instrumental element and multi-element analysis of plant samples—methods and applications. Chichester: Wiley.Google Scholar
  27. Mendil, D., Tuzen, M., Yazici, K., & Soylak, M. (2005). Heavy metals in lichens from roadsides and an industrial zone in Trabzon, Turkey. Bulletin of Environmental Contamination and Toxicology, 74(1), 190–194.CrossRefGoogle Scholar
  28. Merian, E. (1991). Metals and their compound in the environment: Occurrence, analysis, and biological relevance (p. 1438). Weinheim: VCH.Google Scholar
  29. Narin, I., Tuzen, M., Sari, H., & Soylak, M. (2005). Heavy metal content of potato and corn chips from Turkey. Bulletin of Environmental Contamination and Toxicology, 74(6), 1072–1077.CrossRefGoogle Scholar
  30. Panda, B. B., & Panda, K. K. (2002). Genotoxicity and mutagenicity of metals in plants. In K. N. V. Prasad & K. Strzalka (Eds.), Physiology and biochemistry of metal toxicity and tolerance in plants (pp. 395–414). Netherlands: Kluwer Academic Publishers.Google Scholar
  31. Paraíba, L. C., & Kataguiri, K. (2008). Model approach for estimating potato pesticide bioconcentration factor. Chemosphere, 73(8), 1247–1252.CrossRefGoogle Scholar
  32. Qishlaqi, A., Moore, F., & Forghani, G. (2008). Impact of untreated wastewater irrigation on soils and crops in Shiraz suburban area, SW Iran. Environmental Monitoring and Assessment, 141(2–3), 257–273.CrossRefGoogle Scholar
  33. Rattan, R. K., Datta, S. P., Chhonkar, P. K., Suribabu, K., & Singh, A. K. (2005). Long-term impact of irrigation with sewage effluents on heavy metal content in soils, crops and groundwater—a case study. Agriculture, Ecosystems & Environment, 109(3–4), 310–322.CrossRefGoogle Scholar
  34. Saleem, M., Hussain, S. A., Maqsood, A., & Jaffar, M. (1987). Assessment of the toxicity level of an industrial eco-system for its hazardous metals. Pakistan Journal of Scientific and Industrial Research, 30(2), 05–09.Google Scholar
  35. Schroeder, H. A. (1973). The trace elements and nutrition. London: Faber and Faber.Google Scholar
  36. Sharma, R. K., Agrawal, M., & Marshall, F. (2007). Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India. Ecotoxicology and Environment Safety, 66(2), 258–266.CrossRefGoogle Scholar
  37. Tekin, T., Tekin, D., & Bayramoglu, M. (2001). Effect of ultrasound on the dissolution kinetics of phosphate rock in HNO3. Ultrasonics Sonochemistry, 8(4), 373–377.CrossRefGoogle Scholar
  38. Tricker, A. R., & Preussmann, R. (1990). Chemical food contaminants in the initiation of cancer. Proceedings of Nutritional Society, 49, 133–144.CrossRefGoogle Scholar
  39. US-EPA, IRIS (2002). United States, Environmental Protection Agency, Integrated Risk Information System. Accessed 25 Feb 2010.
  40. Wang, X., Sato, T., Xing, B., & Tao, S. (2005). Health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish. Science of the Total Environment, 350(11), 28–37.CrossRefGoogle Scholar
  41. White, P. A., & Claxton, L. D. (2004). Mutagens in contaminated soil: A review. Mutation Research, 567(2–3), 227–345.CrossRefGoogle Scholar
  42. Xue, Z. J., Liu, S. Q., Liu, Y. L., & Yan, Y. L. (2011). Health risk assessment of heavy metals for edible parts of vegetables grown in sewage-irrigated soils in suburbs of Baoding City, China. Environmental Monitoring and Assessment, 11(4), 2204–2206.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Mehrdad Cheraghi
    • 1
    Email author
  • Bahareh Lorestani
    • 1
  • Hajar Merrikhpour
    • 1
  • Nasim Rouniasi
    • 2
  1. 1.Islamic Azad UniversityHamedanIran
  2. 2.Young Researchers Club, Group of EnvironmentIslamic Azad UniversityHamedanIran

Personalised recommendations