Soil microarthropod communities from Mediterranean forest ecosystems in Central Italy under different disturbances

Abstract

The aim of this study is to assess soil quality in Mediterranean forests of Central Italy, from evergreen to deciduous, with different types of management (coppice vs. high forest vs. secondary old growth) and compaction impacts (machinery vs. recreational). Soil quality was evaluated studying soil microarthropod communities and applying a biological index (QBS-ar) based on the concept that the higher is the soil quality, the higher will be the number of microarthropod groups well adapted to the soil habitat. Our results confirm that hardwood soils are characterised by the highest biodiversity level among terrestrial communities and by a well-structured and mature microarthropod community, which is typical of stable ecosystems (QBS value, >200). While silvicultural practices and forest composition do not seem to influence QBS-ar values or microarthropod community structure, the index is very efficient in detecting soil impacts (soil compaction due to logging activities). Several taxa (Protura, Diplura, Coleoptera adults, Pauropoda, Diplopoda, Symphyla, Chilopoda, Diptera larvae and Opiliones) react negatively to soil compaction and degradation (QBS value, <150). In particular, Protura, Diplura, Symphyla and Pauropoda, are taxonomic groups linked to undisturbed soil. This index could also be a useful tool in monitoring soil biodiversity in protected areas and in urban forestry to prevent the negative effects of trampling. QBS-ar is a candidate index for biomonitoring of soil microarthropod biodiversity across the landscape to provide guidance for the sustainable management of renewable resource and nature conservation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Addison, J. (2007). Green tree retention: a tool to maintain ecosystem health and function in second-growth coastal forests. In D. W. Langor (Ed.), Arthropods of Canadian forest (p. 25). Ottawa: Natural Resources Canada, Canadian Forest Service.

    Google Scholar 

  2. Anderson, M. J. (2001). A new method for non-parametric multivariate analysis of variance. Austral Ecology, 26, 32–46.

    Google Scholar 

  3. Aspetti, G. P., Boccelli, R., Ampollini, D., Del Re, A. A. M., & Capri, E. (2010). Assessment of soil-quality index based on microarthropods in corn cultivation in Northern Italy. Ecological Indicators, 10(2), 129–135.

    Article  CAS  Google Scholar 

  4. Bardgett, R. D. (2002). Causes and consequences of animal diversity in soil. Zoology, 105, 367–374.

    Article  Google Scholar 

  5. Bedano, J. C., Cantú, M. P., & Doucet, M. E. (2006). Soil Springtails (Hexapoda: Collembola), symphylans and pauropods (Arthropoda: Myriapoda) under different management systems in agroecosystems of the subhumid Pampa (Argentina). European Journal of Soil Biology, 42(2), 107–119.

    Article  Google Scholar 

  6. Bellarosa, R., Codipietro, P., Piovesan, G., & Schirone, B. (1996). Degradation, rehabilitation and sustainable management of a dunal ecosystem in Central Italy. Land Degradation & Development, 7(4), 297–311.

    Article  Google Scholar 

  7. Bird, S., Robert, N. C., & Crossley, D. A. (2000). Impacts of silvicultural practices on soil and litter arthropod diversity in a Texas pine plantation. Forest Ecology and Management, 131, 65–80.

    Article  Google Scholar 

  8. Bonferroni, C. E. (1935). Il calcolo delle assicurazioni su gruppi di teste. In Studi in onore del Professore Salvatore Ortu Carboni (pp. 13–60). Rome, Italy: Bardi

  9. Bonferroni, C. E. (1936). Teoria statistica delle classi e calcolo delle probabilità. Pubblicazioni dell’Istituto Superiore di Scienze Economiche e Commerciali di Firenze, 8, 3–62.

  10. Bongers, T. (1990). The Maturity Index: an ecological measure of environmental disturbance based on nematode species composition. Oecologia, 83, 14–19.

    Article  Google Scholar 

  11. Bongers, T. (1999). The Maturity Index, the evolution of nematode life history traits, adaptive radiation and cp-scaling. Plant and Soil, 212, 13–22.

    Article  CAS  Google Scholar 

  12. Buger, J. A., & Zedaker, S. M. (1993). Drainage effects on plant diversity and productivity in loblolly pine (Pinus taeda L.) plantations on wet flats. Forest Ecology and Management, 61, 109–126.

    Article  Google Scholar 

  13. Callaham, M. A., Richter, D. D., Coleman, D. C., & Hofmockel, M. (2006). Long-term land-use effects on soil invertebrate communities in Southern Piedmont soils, USA. European Journal of Soil Biology, 42, 150–156.

    Article  Google Scholar 

  14. Cassagne, N., Bal-Serin, M. C., Gers, C., & Gauquelin, T. (2004). Changes in humus properties and collembolan communities following the replanting of beech forests with spruce. Pedobiologia, 48, 267–276.

    Article  Google Scholar 

  15. Clarke, K. R. (1993). Non-parametric multivariate analysis of changes in community structure. Australian Journal of Ecology, 18, 117–143.

    Article  Google Scholar 

  16. Cortet, J., Gomot-De Vauflery, A., Poinsot-Balaguer, N., Gomot, L., Texier, C., & Cluzeu, D. (2000). The use of invertebrate soil fauna in monitoring pollutant effects. European Journal of Soil Biology, 35, 115–134.

    Article  Google Scholar 

  17. Davis, J. C. (1986). Statistics and data analysis in geology. New York: Wiley.

    Google Scholar 

  18. Deleporte, S. (1981). Peuplement en Diptères Sciaridae d’une litière de chêne. Revue d’Ecologie et de Biologie du Sol, 18, 231–242.

    Google Scholar 

  19. Di Filippo, A., Alessandrini, A., Biondi, F., Blasi, S., Portoghesi, L., & Piovesan, G. (2010). Climate change and oak decline: dendroecology and stand productivity of a Turkey oak (Quercus cerris L.) old stored coppice in Central Italy. Annals of Forest Science, 67, 706.

    Article  Google Scholar 

  20. Doblas-Miranda, E., Wardle, D. A., Peltzer, D. A., & Yeates, G. W. (2007). Changes in the community structure and diversity of soil invertebrate across the Franz Josef Glacier chronosequence. Soil Biology and Biochemistry, 40, 1069–1081.

    Article  Google Scholar 

  21. Doran, J. W., & Parkin, T. B. (1994). Defining and assessing soil quality. SSSA Special Publication, 35, 3–21.

    CAS  Google Scholar 

  22. Gardi, C., Tomaselli, M., Parisi, V., Petraglia, A., & Santini, C. (2002). Soil quality indicators and biodiversity in northern Italian permanent grasslands. European Journal of Soil Biology, 38, 103–110.

    Article  Google Scholar 

  23. Gardi, C., Menta, C., & Leoni, A. (2008). Evaluation of environmental impact of agricultural management practices using soil microarthropods. Fresenius Environmental Bulletin, 17(8b), 1165–1169.

    CAS  Google Scholar 

  24. Grgič, T., & Kos, I. (2005). Influence of forest phase on centipede diversity in managed beech forests in Slovenia. Biodiversity and Conservation, 14, 1841–1862.

    Article  Google Scholar 

  25. Guinchard, M., & Robert, J.-C. (1991). Approche biocénotique du système sol par l’étude du peuplement de larve d’insectes (première contribution). Revue d’Ecologie et de Biologie du Sol, 28, 479–490.

    Google Scholar 

  26. Gupta, S. R., & Malik, V. (1996). Soil ecology and sustainability. Tropical Ecology, 37(1), 43–55.

    Google Scholar 

  27. Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Palaeontological Statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), 9.

    Google Scholar 

  28. Han, S.-K., Han, H.-S., Page-Dumroese, D. S., & Johnson, L. R. (2009). Soil compaction associated with cut-to-length and whole tree harvesting of coniferous forest. Canadian Journal of Forest Research, 39, 976–989.

    Article  Google Scholar 

  29. Harper, D. A. T. (1999). Numerical palaeobiology. Chichester: Wiley.

    Google Scholar 

  30. Hedde, M., Aubert, M., Bureau, F., Margerie, P., & Decaens, T. (2007). Soil detritivore macro-invertebrate assemblages throughout a managed beech rotation. Annals of Forest Science, 64, 219–228.

    Article  Google Scholar 

  31. Heliovaara, K., & Vaisanen, R. (1984). Effects of modern forestry on northwestern European forest invertebrates—a synthesis. Acta Forestalia Fennica, 83, 1–96.

    Google Scholar 

  32. Herrick, J. E. (2000). Soil quality: an indicator of sustainable land management? Applied Soil Ecology, 15, 73–83.

    Article  Google Scholar 

  33. Hill, S. B., Metz, L. J., & Farrier, M. H. (1975). Soil mesofauna and silvicultural practices. In B. Bernier & C. H. Winget (Eds.), Forest soil and forest management (pp. 119–135). Laval: Les Presses de l’Université Laval, France.

    Google Scholar 

  34. Hodkinson, I. D., & Jackson, J. K. (2005). Terrestrial and aquatic invertebrates as bioindicators for environmental monitoring, with particular reference to mountain ecosystems. Environmental Management, 35, 649–666.

    Article  Google Scholar 

  35. Hoekstra, J. M., Bell, R. T., Launer, A. E., & Murphy, D. D. (1995). Soil arthropod abundance in coastal redwood forest: effect of selective timber harvest. Environmental Entomology, 24, 246–252.

    Google Scholar 

  36. Hogervorst, R. F., Verhoef, H. A., & van Straalen, N. M. (1993). Five year trends in soil arthropod densities in pine forests with various levels of vitality. Biology and Fertility of Soils, 15, 189–195.

    Article  Google Scholar 

  37. Huhta, V., Karppingen, E., Nurminen, M., & Valpas, A. (1967). Effect of silvicultural practices upon arthropod, annelid and nematode populations in coniferous forest soil. Annales Zoologici Fennici, 4, 87–143.

    Google Scholar 

  38. Huhta, V., & Räty, M. (2005). Soil animal communities of planted birch stands in central Finland. Silva Fennica, 39, 5–19.

    Google Scholar 

  39. Jabin, M., Mohr, D., Kappes, H., & Topp, W. (2004). Influence of deadwood on density of soil macro-arthropods in a managed oak–beech forest. Forest Ecology and Management, 194, 61–69.

    Article  Google Scholar 

  40. Jackson, D. A. (1993). Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology, 74, 2204–2214.

    Article  Google Scholar 

  41. Kaneko, N., & Salamanca, E. (1999). Mixed leaf litter effects on decomposition rates and soil microarthropod communities in an oak–pine stand in Japan. Ecological Research, 14, 131–138.

    Article  Google Scholar 

  42. Karlen, D. L., Mausbach, M. J., Doran, J. W., Cline, R. G., Harris, R. F., & Schuman, G. E. (1997). Soil quality: a concept, definition, and framework for evaluation. Soil Science Society of American Journal, 61(1), 4–10.

    Article  CAS  Google Scholar 

  43. Lasebikan, B. A. (1975). The effect of clearing on the soil arthropods of a Nigerian rain forest. Biotropica, 7, 84–89.

    Article  Google Scholar 

  44. Lebrun, P. (1987). Quelques réflexions sur les rôles exercés par la faune édaphique. Revue d’Ecologie et de Biologie du Sol, 24, 495–502.

    Google Scholar 

  45. Leoni, A. (2008). Studio della Biodiversità vegetale e del popolamento a microartropodi edafici nella riserva naturale “Guadine Pradaccio”. Ph.D. thesis, Università degli Studi di Parma, Parma

  46. Menta, C. (2008). Guida alla conoscenza della Biologia e Ecologia del Suolo—Funzionalità, Degrado, indicatori. (p. 265) Bologna: Gruppo Perdisa Editore. ISBN 978-88-8372-454-1.

  47. Menta, C., Leoni, A., Bardini, M., Gardi, C., & Gatti, F. (2008). Nematode and microarthropod communities: comparative use of soil quality bioindicators in covered dump and natural soils. Environmental Bioindicators, 3(1), 35–46.

    Article  Google Scholar 

  48. Menta, C., Leoni, A., Gardi, C., & Conti, F. D. (2011). Are grasslands important habitats for soil microarthropod conservation? Biodiversity and Conservation, 20(5), 1073–1087.

    Article  Google Scholar 

  49. Minnesota Forest Resources Council. (1999). Sustaining Minnesota forest resources: voluntary site-level forest management guidelines for landowners, loggers, and resources managers (p. 473). St. Paul: Minnesota Forest Resources Council.

    Google Scholar 

  50. Moore, J. D., Ouimet, R., Camiré, C., & Houle, D. (2002). Effects of two silvicultural practices on soil fauna abundance in a northern hardwood forest, Québec, Canada. Canadian Journal of Soil Science, 82, 105–113.

    Article  Google Scholar 

  51. Neave, P., & Fox, C. A. (1998). Response of soil invertebrates to reduced tillage systems established on a clay loam soil. Applied Soil Ecology, 9, 423–428.

    Article  Google Scholar 

  52. Ojala, R., & Huhta, V. (2001). Dispersal of microarthropods in forest soil. Pedobiologia, 41, 443–450.

    Article  Google Scholar 

  53. Paoletti, M. G., & Hassall, M. (1999). Woodlice (Isopoda: Oniscidea): their potential for assessing sustainability and use as bioindicators. Agriculture, Ecosystems and Enviroment, 74, 157–165.

    Article  Google Scholar 

  54. Paquin, P., & Coderre, D. (1997). Changes in soil macroarthropod communities in relation to forest maturation through three successional stages in the Canadian boreal forest. Oecologia, 112(1), 104–111.

    Article  Google Scholar 

  55. Parisi, V. (2001). La qualità biologica del suolo. Un metodo basato sui microartropodi. Acta Naturalia de “L’Ateneo Parmense”, 37(3/4), 105–114.

    Google Scholar 

  56. Parisi, V., Cristina, M., Gardi, C., Jacomini, C., & Mozzanica, E. (2005). Microarthropod communities as a tool to assess soil quality and biodiversity: a new approach in Italy. Agriculture, Ecosystems and Environment, 105, 323–333.

    Article  Google Scholar 

  57. Piovesan, G., Biondi, F., Di Filippo, A., Alessandrini, A., & Maugeri, M. (2008). Drought-driven growth reduction in old beech (Fagus sylvatica L.) forests of the central Apennines, Italy. Global Change Biology, 14, 1265–1281.

    Article  Google Scholar 

  58. Podrini A., Di Fabbio, A., Jacomini, C., Dowgiallo, G. (2006). Relationships between pedological matrix and soil mesofauna in the Natural Reserve of Decima-Malafede (Latium): a new approach and possible applications. S.It.E. Atti XXX. XVI° Congresso della Società Italiana di Ecologia, Viterbo-Civitavecchia. http://www.ecologia.it/congressi/XVI/articles/jacomini-267.pdf

  59. Ponge, J. F., André, J., Zackrisson, O., Bernier, N., Nilsson, M.-C., & Gallet, C. (1998). The forest regeneration puzzle. BioScience, 48, 523–528.

    Article  Google Scholar 

  60. Radea, C., & Arianoutsou, M. (2002). Environmental responses of soil arthropod communities along an altitudinal-climatic gradient of Western Crete in Greece. Journal of Mediterranean Ecology, 3, 37–45.

    Google Scholar 

  61. Ricci Lucchi, M. (2008). Vegetation dynamics during the Last Interglacial-Glacial cycle in the Arno coastal plain (Tuscany, western Italy): location of a new tree refuge. Quaternary Science Reviews, 27, 2456–2466.

    Article  Google Scholar 

  62. Ruf, A., Beck, L., Dreher, P., Hund-Rinke, K., Römbke, J., & Spelda, J. (2003). A biological classification concept for the assessment of soil quality: “biological soil classification scheme” (BBSK). Agriculture, Ecosystems and Environment, 98, 263–271.

    Article  Google Scholar 

  63. Rusek, J. (1985). Soil microstructures—contribution on specific soil organisms. Quaestiones Entomologicae, 21, 497–514.

    Google Scholar 

  64. Tabaglio, V., Gavazzi, C., & Menta, C. (2008). The influence of no-till, conventional tillage and nitrogen fertilization on physico-chemical and biological indicators after three years of monoculture barley. Italian Journal of Agronomy, 3(4), 233–240.

    Google Scholar 

  65. Tabaglio, V., Gavazzi, C., & Menta, C. (2009). Physico-chemical indicators and microarthropod communities as influenced by no-till, conventional tillage and nitrogen fertilisation after four years of continuous maize. Soil & Tillage Research, 105(1), 135–142.

    Article  Google Scholar 

  66. Theenhaus, A., & Schaefer, M. (1995). The effects of clear-cutting and liming on the soil macrofauna of a beech forest. Forest Ecology and Management, 77, 35–51.

    Article  Google Scholar 

  67. Touloumis, K., & Stamou, G. P. (2009). A metapopulation approach of the dynamics of arthropods from Mediterranean-type ecosystems. Ecological Modelling, 220(8), 1105–1112.

    Article  Google Scholar 

  68. Toutain, F. (1987). Les litières: siège de systèmes interactifs et moteur de ces interactions. Revue d’Ecologie et de Biologie du Sol, 24, 231–242.

    Google Scholar 

  69. van Straalen, N. M. (1998). Evaluation of bioindicator systems derived from soil arthropod communities. Applied Soil Ecology, 9, 429–437.

    Article  Google Scholar 

  70. van Straalen, N. M. (2004). The use of soil invertebrates in ecological survey of contaminated soils. In P. Doelman & H. Eijsackers (Eds.), Vital soil. Amsterdam: Elsevier.

    Google Scholar 

  71. Vlug, H., & Borden, J. H. (1973). Acari and Collembola populations affected by logging and slash burning in a coastal British Columbia coniferous forest. Environmental Entomology, 2, 1016–1023.

    Google Scholar 

  72. Zar, J. H. (1996). Biostatistical analysis (3rd ed.). New York: Prentice-Hall.

    Google Scholar 

Download references

Acknowledgements

Funding was provided, in part, by research project PRAL Regione Lazio n. 2003/75. We thank Scott Mensing for English editorial revisions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gianluca Piovesan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 28 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Blasi, S., Menta, C., Balducci, L. et al. Soil microarthropod communities from Mediterranean forest ecosystems in Central Italy under different disturbances. Environ Monit Assess 185, 1637–1655 (2013). https://doi.org/10.1007/s10661-012-2657-2

Download citation

Keywords

  • Soil fauna
  • Soil disturbance
  • Forest management
  • Biological index
  • Microarthropods
  • Soil monitoring