Environmental Monitoring and Assessment

, Volume 185, Issue 1, pp 877–890 | Cite as

Climate change impact on the olive pollen season in Mediterranean areas of Italy: air quality in late spring from an allergenic point of view

  • Tommaso Bonofiglio
  • Fabio Orlandi
  • Luigia Ruga
  • Bruno Romano
  • Marco Fornaciari


Recent studies have shown that there are many effects of climate change on aeroallergens, and thus on allergic diseases in humans. In the Mediterranean region, despite the importance of the olive tree for production, there is high allergenicity of olive pollen and related risks to human health. Aerobiological sampling techniques can be used to analyse the pollinosis phenomenon through determination of mean daily pollen concentrations per cubic metre of air. The present study was carried out from 1999 to 2008 in 16 olive-growing areas in Italy, to update the information on the pollinosis characteristics of Olea europaea in the study areas. The analysis of the average flowering season over the study period highlights a temporal scaling of pollen in the atmosphere that depends on the different climatic characteristics. This is mainly dependent on temperature, and in part, determined by latitude. Generally, the levels of O. europaea pollen in the atmosphere are higher from mid-April to the end of June, with the period of greatest risk to human health due to this olive pollen in this area currently limited primarily to the last 10 days of May. However, the pollen season can move, depending on the climate scenario considered, and data here can be used to determine potential time shifts in pollinosis that might cause more precocious asthma and allergy problems. The allergy season for this type of pollen might be significantly precocious in future decades (20–30 days earlier in the year), which will impact on the severity and duration of allergies attributable to olive tree pollen.


Global warming Human health Allergic illnesses Pollen grains Italy 



Average daily pollen concentration


Average annual pollen counts


Percentage of days with a concentration of grains per cubic metre air >400


End of flowering


Full flowering date


Total pollen index


Maximum pollen counts (grains/days)


Main pollination period


Number of days with a concentration >400 grains/m3 air


Start of flowering


Average temperature during the 3 months, March–April–May


Critical threshold of pollen concentration (>400 grains/m3 air)


  1. Barber, D., Moreno, C., Ledesma, A., Serrano, P., Galan, A., Villalba, M., et al. (2007). Degree of olive pollen exposure and sensitization patterns: Clinical implications. Journal Investigation Allergological Clinical immunology, 17(1), 63–68.Google Scholar
  2. Beaubien, E. G., & Freeland, H. J. (2000). Spring phenology trends in Alberta, Canada: Links to ocean temperature. International Journal of Biometeorology, 44, 53–59.CrossRefGoogle Scholar
  3. Beggs, P. J. (2010). Adaptation to impacts of climate change on aeroallergens and allergic respiratory diseases. International Journal of Environmental Research and Public Health, 7, 3006–3021.CrossRefGoogle Scholar
  4. Bonofiglio, T., Orlandi, F., Sgromo, C., Romano, B., & Fornaciari, M. (2008). Influence of temperature and rainfall on timing of olive (Olea europaea) flowering in southern Italy. New Zealand Journal of Crop and Horticultural Science, 36, 59–69.CrossRefGoogle Scholar
  5. Bonofiglio, T., Orlandi, F., Sgromo, C., Romano, B., & Fornaciari, M. (2009). Evidences of olive pollination date variations in relation to spring temperature trends. Aerobiologia, 25, 227–237.CrossRefGoogle Scholar
  6. Bousquet, J., Cour, P., Guerin, B., & Michel, F. B. (1985). Allergy in the Mediterranean area: Pollen counts and pollinosis of Montpellier. Clinical Allergy, 14, 249–258.Google Scholar
  7. Brown, J. L., Li, S. H., & Bhagabati, N. (1999). Long-term trend toward earlier breeding in an American bird: A response to global warming? Ecology, 96, 5565–5569.Google Scholar
  8. Caiaffa, M. F., Macchia, L., & Tursi, A. (1991). Il polline di Olea europaea e la sua importanza in allergologia. Giornale Italiano Allergologia e Immunologia Clinica, 1, 471–474.Google Scholar
  9. Canu, A., Pellizzaro, G., Cesaraccio, C., Sirca, C., & Vargiu, A. (2006). Flowering phenology of olive trees (Olea europea L.) in North Sardinia (Italy) and its relationships with airborne pollen pattern. Proceedings of the 17th Conference on Biometeorology and Aerobiology, 22–26 May 2006, San Diego.Google Scholar
  10. Cariñanos, P., Sánchez-Mesa, J. A., Prieto-Baena, J. C., Lopez, A., Guerra, F., Moreno, C., et al. (2002). Pollen allergy related to the area of residence in the city of Córdoba, south-west Spain. Journal Environment Monitoring, 4, 734–738.CrossRefGoogle Scholar
  11. Cecchi, L., D'Amato, G., Ayres, J. G., Galan, C., et al. (2010). Projections of the effects of climate change on allergic asthma: The contribution of aerobiology. Allergy. doi:10.1111/j.1398-9995.2010.02423.x.
  12. Chmielewski, F. M., & Rötzer, T. (2002). Annual and spatial variability of the beginning of growing season in Europe in relation to air temperature changes. Climate Research, 19, 257–264.CrossRefGoogle Scholar
  13. D'Amato, G., & Spieksma, F. T. M. (1992). European allergenic pollen types. Aerobiologia, 8(3), 447–450.CrossRefGoogle Scholar
  14. D'Amato, G., Liccardi, G., & Russo, M. (1994). Oleaceae pollinosis: Aerobiological and clinical aspects. Revista Española de Alergología e Inmunología Clínica, 9(2), 50–54.Google Scholar
  15. D'Amato, G., Cecchi, L., Bovini, S., Nunes, C., Annesi-Maesano, I., Behrendt, H., et al. (2007). Allergenic pollen and pollen allergy in Europe. Allergy, 62, 976–990.CrossRefGoogle Scholar
  16. Domínguez Vilches, E., Infante García-Pantaleón, F., Galán Soldevilla, C., Guerra Pasadas, F., & Villamandos de la Torre, F. (1993). Variations in the concentrations of airborne Olea pollen and associated pollinosis in Córdoba (Spain): A study of the 10-year period 1982–1991. Journal of Investigational Allergology and Clinical Immunology, 3(3), 121–129.Google Scholar
  17. Emberlin, J. (1994). The effects of patterns in climate and pollen abundance on allergy. Allergy, 49, 15–20.CrossRefGoogle Scholar
  18. Emberlin, J., Detandt, M., Gehrig, R., Jager, S., Nolard, N., & Rantio-Lehtimaski, A. (2002). Responses in the start of Betula (birch) pollen seasons to recent changes in spring temperatures across Europe. International Journal of Biometeorology, 46, 159–170.CrossRefGoogle Scholar
  19. Faggian, P., & Giorgi, P. (2009). An analysis of global model projections over Italy, with particular attention to the Italian Greater Alpine Region (GAR). Climatic Change, 96, 239–258.CrossRefGoogle Scholar
  20. Fitter, A. H., & Fitter, R. S. R. (2002). Rapid changes in flowering time in British plants. Science, 296, 1689–1691.CrossRefGoogle Scholar
  21. Florido, J. F., González, P., Arias de Saavedra, J. M., Quiralte, J., Peralta, V., & Sáenz de San Pedro, L. (1999). High levels of olive pollen and clinical findings. International Archives of Allergy and Immunology, 119, 133–137.CrossRefGoogle Scholar
  22. Fornaciari, M., Pieroni, L., Ciuchi, P., & Romano, B. (1997). A statistical model for correlatine airborne pollen grains (Olea europaea L.) and some meteorological parameters. Agricoltura Mediterranea, 127, 134.Google Scholar
  23. Fornaciari, M., Orlandi, F., & Romano, B. (2005). Yield forecasting for olive trees: New approach in a historical series (Umbria, Central Italy). Agronomy Journal, 97, 1537–1542.CrossRefGoogle Scholar
  24. Fornaciari, M., Bonofiglio, T., Orlandi, F., Sgromo, C., Scazziota, B., & Romano, B. (2007). Possibile “traslazione” dell’area di coltivazione dell’olivo a seguito del cambiamento climatico. Italian Journal of Agrometeorology, 1, 22–23.Google Scholar
  25. Galán, C., García-Mozo, H., Vázquez, L., Ruis, L., De la Guardia, C. D., & Trigo, M. M. (2005). Heat requirement for the onset of the Olea europea L. pollen season in several sites in Andalusia and the effect of the expected future climate change. International Journal of Biometeorology, 49, 184–188.CrossRefGoogle Scholar
  26. Garcìa-Mozo, H., Perez-Badia, R., & Galán, C. (2008). Aerobiological and meteorological factors' influence on olive (Olea europaea L.) crop yield in Castilla-La Mancha (Central Spain). Aerobiologia, 24, 13–18.CrossRefGoogle Scholar
  27. Gioulekas, D., Papakosta, D., Damialis, A., Spieksma, F., Gioulekas, P., & Patakas, D. (2004a). Allergenic pollen records (15 years) and sensitization in patients with respiratory allergy in Thessaloniki, Greece. Allergy, 59, 174–184.CrossRefGoogle Scholar
  28. Gioulekas, D., Balafoutis, C., Damialis, A., Papacosta, D., Gioulekas, G., & Patakas, D. (2004). Fifteen years records of airborne allergenic pollen and meteorological parameters in Thessaloniki, Greece. International Journal of Biometeorology, 48, 128–136.CrossRefGoogle Scholar
  29. Gonzàlez-Minero, F. J., & Candau, P. (1997). Olea europaea airborne pollen in southern Spain. Annals of Allergy, Asthma & Immunology, 78(3), 278–284.CrossRefGoogle Scholar
  30. Hertig, E., & Jacobeit, J. (2008). Assessments of Mediterranean precipitation changes for the 21st century using statistical downscaling techniques. International Journal of Climatology, 28, 1025–1045.CrossRefGoogle Scholar
  31. Higgins, S. I., & Richardson, M. (1999). Predicting plant migration rates in a changing world: The role of long-distance dispersal. The American Naturalist, 153, 464–475.CrossRefGoogle Scholar
  32. IPCC. (2007). Summary for policymakers. In: S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, & H. L. Miller (eds.), Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
  33. ISTAT. (2002). 5°Censimento dell'Agricoltura. http://censagr.istat.it/. Accessed 20 April 2010.
  34. Jaagus, J., & Ahas, R. (2000). Space-time variations of climatic seasons and their correlation with the phenological development of nature in Estonia. Climate Research, 15, 207–219.CrossRefGoogle Scholar
  35. Lauzurica, P., Gurbindo, C., Maturi, N., Galoche, B., Diaz, R., Gonzalez, J., et al. (1988). Olive (Olea europaea) pollen allergens-I. Immunochemical characterization by immunoblotting, CRIE and immunodetection by a monoclonal antibody. Molecular Immunology, 25, 329–335.CrossRefGoogle Scholar
  36. Levetin, E. (2004). Methods for aeroallergen sampling. Current Allergy and Asthma Reports, 4(5), 376–383.CrossRefGoogle Scholar
  37. Menzel, A. (2002). Phenology: Its importance to the global change community. Climatic Change, 54, 379–385.CrossRefGoogle Scholar
  38. Menzel, A., Estrella, N., & Fabian, P. (2001). Spatial and temporal variabilità of the phenological seasons in Germany from 1951 to 1996. Global Change Biology, 7, 657–666.CrossRefGoogle Scholar
  39. Murray, M. G., Scoffield, R. L., Gálan, C., & Villamil, C. B. (2007). Airborne pollen sampling in a wildlife reserve in the south of Buenos Aires province, Argentina. Aerobiologia, 23, 107–117.CrossRefGoogle Scholar
  40. Neilson, P. R., Pitelka, L. F., Solomon, A. M., Nathan, R., Midgley, G. F., Fragoso, J. M. V., et al. (2005). Forecasting regional to global plant migration in response to climate change. BioScience, 55(9), 749–759.CrossRefGoogle Scholar
  41. Orlandi, F., Ferranti, F., Romano, B., & Fornaciari, M. (2003). Olive pollination: Flowers and pollen of two cultivars of Olea europaea L. New Zealand Journal of Crop and Horticultural Science, 31, 159–168.CrossRefGoogle Scholar
  42. Orlandi, F., Sgromo, C., Bonofiglio, T., Ruga, L., Romano, B., & Fornaciari, M. (2009). A comparison among olive flowering trends in different Mediterranean areas (south-central Italy) in relation to meteorological variations. Theoretical and Applied Climatology, 97, 339–347.CrossRefGoogle Scholar
  43. Orlandi, F., Garcia-Mozo, H., Galán, C., Romano, B., Diaz de la Guardia, C., Ruiz, L., et al. (2010a). Olive flowering trends in a large Mediterranean area (Italy and Spain). International Journal of Biometeorology, 54(2), 151–163.CrossRefGoogle Scholar
  44. Orlandi, F., Msallem, M., Bonofiglio, T., Ben Dhiab, A., Sgromo, C., Romano, B., et al. (2010b). Relationship between olive flowering and latitude in two Mediterranean countries (Italy and Tunisia). Theoretical and Applied Climatology, 102, 265–273.CrossRefGoogle Scholar
  45. Osborne, C. P., Chuine, I., Viner, D., & Woodward, F. I. (2000). Olive phenology as a sensitive indicator of future climate warming in the Mediterranean. Plant, Cell and Environment, 23, 701–710.Google Scholar
  46. Peñuelas, J., & Filella, I. (2001). Phenology: Responses to a warming world. Science, 294(5543), 793–795.CrossRefGoogle Scholar
  47. Peñuelas, J., Filella, I., & Comas, P. (2002). Changed plant and animal life cycles from 1952 to 2000 in the Mediterranean region. Global Change Biology, 8, 531–544.CrossRefGoogle Scholar
  48. Quiralte, J., Palacios, L., Rodrìguez, R., Càrdaba, B., Arias de Saavedra, J. M., Villalba, M., et al. (2007). Modelling diseases: The allergens of Olea europaea pollen. Journal Investigation Allergological Clinical Immunological, 17(1), 76–82.Google Scholar
  49. Reid, E. C., & Gamble, J. L. (2009). Aeroallergens, allergic disease, and climate change: Impacts and adaptation. EcoHealt. doi:10.1007/s10393-009-0261-x.
  50. Rodríguez, R., Villalba, M., Monsalve, R. I., & Batanero, E. (2001). The spectrum of olive pollen allergens. International Archives of Allergy and Immunology, 125, 185–195.CrossRefGoogle Scholar
  51. Schwartz, M. D., & Chen, X. (2002). Examining the onset of spring in China. Climate Research, 21, 157–164.CrossRefGoogle Scholar
  52. Schwartz, M. D., & Reiter, B. E. (2000). Changes in North American spring. International Journal of Climatology, 20(8), 929–932.CrossRefGoogle Scholar
  53. Shea, K. M., Truckner, R. T., Weber, R. W., & Peden, D. B. (2008). Climate change and allergic disease. Journal of Investigational Allergology and Clinical Immunology, 122(3), 443–453.CrossRefGoogle Scholar
  54. Sparks, T. H., Jeffre, E. P., & Jeffre, C. E. (2000). An examination of the relationship between flowering times and temperature at the national scale using long-term phenological records from the UK. International Journal of Biometeorology, 44, 82–87.CrossRefGoogle Scholar
  55. Spieksma, F. T. M., Emberlin, J. C., Hjelmroos, M., Jäger, S., & Leuschner, R. M. (1995). Atmospheric birch (Betula) pollen in Europe: Trends and fluctuations in annual quantities and the starting dates of the seasons. Grana, 34, 51–57.CrossRefGoogle Scholar
  56. Stach, A., Garcıa-Mozo, H., Prieto-Baena, J. C., Czarnecka-Operacz, M., Jenerowicz, D., Sihy, W., et al. (2007). Prevalence of Artemisia species pollinosis in western Poland: Impact of climate change on aerobiological trends, 1995–2004. Journal of Investigational Allergology and Clinical Immunology, 17, 39–47.Google Scholar
  57. Staffolani, L., Velasco-Jiménez, M. J., Galán, C., & Hruska, K. (2011). Allergenicity of the ornamental urban flora: Ecological and aerobiological analyses in Córdoba (Spain) and Ascoli Piceno (Italy). Aerobiologia, 27, 239–246.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Tommaso Bonofiglio
    • 1
  • Fabio Orlandi
    • 1
  • Luigia Ruga
    • 1
  • Bruno Romano
    • 1
  • Marco Fornaciari
    • 1
  1. 1.Department of Applied BiologyUniversity of PerugiaPerugiaItaly

Personalised recommendations