Skip to main content

Advertisement

Log in

Heavy metal enrichment in the seagrasses of Lakshadweep group of islands—A multivariate statistical analysis

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

An assessment on heavy metal (Al, Cd, Co, Cr, Cu, Fe, Mg, Mn, Ni, Pb and Zn) accumulation by seven seagrass species of Lakshadweep group of islands was carried out using multivariate statistical tools like principal component analysis (PCA) and cluster analysis (CA). Among all the metals, Mg and Al were determined in higher concentration in all the seagrasses, and their values varied with respect to different seagrass species. The concentration of the four toxic heavy metals (Cd, Pb, Zn and Cu) was found higher in all the seagrasses when compared with the background values of seagrasses from Flores Sea, Indonesia. The contamination factor of these four heavy metals ranged as Cd (1.97–12.5), Cu (0.73–4.40), Pb (2.3–8.89) and Zn (1.27–2.787). In general, the Pollution Load Index (PLI) calculated was found to be maximum for Halophila decipiens (58.2). Results revealed that Halophila decipiens is a strong accumulator of heavy metals, followed by Halodule uninervis and Halodule pinifolia, among all the tested seagrasses. Interestingly, the small-leaved seagrasses were found to be efficient in heavy metal accumulation than the large-leaved seagrass species. Thus, seagrasses can better be used for biomonitoring, and seagrasses can be used as the heavy metal sink as the biomass take usually long term to get remineralize in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Adriano, D. C. (2001). Trace elements in terrestrial environments: Biogeochemistry, bioavailability and risks of metals (pp. 47–71). New York: Springer-Verlag.

    Google Scholar 

  • Anu, G., Kumar, N. C., Jayalakshmi, K. V., & Nair, S. M. (2007). Monitoring of heavy metal partitioning in coral reefs of Lakshadweep archipelago, Indian ocean. Environmental Monitoring and Assessment, 128, 195–208.

    Article  CAS  Google Scholar 

  • Anu, G., Muraleedharan, N. S., Chandramohankumar, N., & Jayalakshmi, K. V. (2011). Statistical significance of bio-monitoring of marine algae for trace metal levels in a coral environment. Environmental Forensics, 12, 98–105.

    Article  Google Scholar 

  • Baoli, W., & Congqiong, L. (2004). Factors controlling the distribution of trace metals in macroalgae. Chinese Journal of Geochemistry, 23, 366–372.

    Article  Google Scholar 

  • Batley, G. E. (1987). Heavy metal speciation in waters, sediments and biota from Lake Macquarie, New South Wales. Australian Journal of Marine & Freshwater Research, 38, 591–606.

    Article  CAS  Google Scholar 

  • Bell, J. D., & Pollard, D. A. (1989). Ecology of fish assemblages and fisheries associated with seagrass. In A. W. D. Larkum, A. J. McComb, & S. Shepherd (Eds.), Biology of seagrasses: A treatise on the biology of seagrass with special reference to the Australian region (pp. 565–609). Amsterdam: Elsevier Science Publishing Company.

    Google Scholar 

  • Blandin, P. (1986). Bioindicateurs et diagnostic des syste’mes e’cologiques. Bulletin d’ Ecologie, 17, 211–307.

    Google Scholar 

  • Brinkhuis, B. H., Penello, W. F., & Churchill, A. C. (1980). Cadmium and manganese flux in eelgrass Zostera marina II. Metal uptake by leaf and root-rhizome tissues. Marine Biology, 58, 187–196.

    Article  CAS  Google Scholar 

  • Caccia, V. G., Millero, F. J., & Palalques, A. (2003). The distribution of trace metals in Florida Bay sediments. Marine Pollution Bulletin, 46, 1420–1433.

    Article  CAS  Google Scholar 

  • Conti, M. E., Iacobucci, M., & Cecchetti, G. (2007). A biomonitoring study: trace metals in seagrass, algae and mollusks in a marine reference ecosystem (southern Tyrrhenian sea). International Journal of Environmental Pollution, 29, 308–332.

    Article  CAS  Google Scholar 

  • Conti, M. E., Bocca, B., Iacobucci, M., Finoia, M. G., Mecozzi, M., Pino, A., & Alimonti, A. (2010). Baseline trace metals in seagrass, algae and mollusks in a southern Tryyhenian ecosystem (Linosa island, Sicily). Archives of Environment Contamination and Toxicology, 58, 79–95.

    Article  CAS  Google Scholar 

  • Costanza, R., d’Arge, R., de Groot, R., Farberk, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O’Neil, R. V., Paruelo, J., Raskin, R. G., Sutton, P., & Belt, M. V. D. (1997). The value of the world’s ecosystem services and natural capital. Nature, 387, 253–260.

    Article  CAS  Google Scholar 

  • Dauer, D. M. (1993). Biological criteria, environmental health and estuarine macrobenthic community structure. Marine Pollution Bulletin, 26, 249–257.

    Article  Google Scholar 

  • Diaz, R. V., Aldape, J., & Flores, M. (2002). Identification of airborne particulate sources of sample collected in Ticoman, Mexico, using PIXE and multivariate analysis. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 189, 249–253.

    Article  CAS  Google Scholar 

  • D'Souza, E., & Patankar, V. (2009). First underwater sighting and preliminary behavioural observations of Dugongs (Dugong dugon) in the wild from Indian waters, Andaman Islands. Journal of Threatened Taxa, 1, 49–53.

    Google Scholar 

  • Ferrat, L., Martini, C. P., & Romeo, M. (2003). Assessment of the use of biomarkers in aquatic plants for the evaluation of environmental quality: application to seagrasses. Aquatic Toxicology, 65, 187–204.

    Article  CAS  Google Scholar 

  • Filho, G. M. A., Creed, J. C., Andrade, L. R., & Pfeiffer, W. C. (2004). Metal accumulation by Halodule wrightii populations. Aquatic Botany, 80, 241–251.

    Article  Google Scholar 

  • Gochfeld, M. (2003). Cases of mercury exposure, bioavailability and adsorption. Ecotoxicology and Environment Safety, 56, 174–179.

    Article  CAS  Google Scholar 

  • Gordon, D. M., Case, K. A. S. C., & Simpson, C. J. (1994). Changes to the structure and productivity of a Posidonia sinuosa meadow during and after imposed shading. Aquatic Botany, 47, 265–275.

    Article  Google Scholar 

  • Hoelinger, M. A. S., & Schlacher, T. A. (1998). Differential accumulation patterns of heavy metals among the dominant macrophytes of a Mediterranean seagrass meadow. Chemosphere, 37, 1511–1519.

    Article  Google Scholar 

  • Idris, A. M. (2008). Combining multivariate analysis and geochemical approaches for assessing heavy metal level in sediments from Sudanese harbors along the Red Sea coast. Microchemical Journal, 90, 159–163.

    Article  CAS  Google Scholar 

  • Jagtap, T. G. (1983). Metal distribution in Halophila beccarii (Aschers) and surrounding environment along the central west coast of India. Mahasagar, 16(4), 429–434.

    CAS  Google Scholar 

  • James, P. S. B. R. (2011). The Lakshadweep: islands of ecological fragility, environmental sensitivity and anthropogenic vulnerability. Journal of Coastal Environment, 2(1), 9–25.

    Google Scholar 

  • Kaiser, H. F. (1960). The application of electronic computers to factor analysis. Educational and Psychological Measurement, 20, 141–151.

    Article  Google Scholar 

  • Kannan, R., Ganesan, M., Govindasamy, C., Rajendran, K., Sampathkumar, P., & Kannan, L. (1992). Tissue concentration of heavy metals in seagrasses of Palk Bay, Bay of Bengal. International Journal of Ecology and Environmental Sciences, 18, 29–34.

    Google Scholar 

  • Kannan, R. R. R., Arumugam, R., & Anantharaman, P. (2011). Chemometric studies of multielemental composition of few seagrasses from Gulf of Mannar, India. Biological Trace Element Research, 143, 1149–1158.

    Article  CAS  Google Scholar 

  • Khashman, O. A. A. (2007). Determination of metal accumulation in deposited street dusts in Amman, Jordan. Environmental Geochemistry and Health, 29, 1–10.

    Article  Google Scholar 

  • Klumpp, D. W., & Valk, A. V. (1984). Nutritional quality of seagrass Posidonia australis and Heterozostera tasmanica: comparison between species and stages of decomposition. Marine Biology Letters, 5, 67–84.

    CAS  Google Scholar 

  • Lanyon, J., Limpus, C. J., & Marsh, H. (1989). Dugong and turtles: Grazers in the seagrass system. In A. W. D. Larkum, A. J. Mc Comb, S. A. Shepherd (Eds.), Biology of seagrasses: A treatise on the biology of seagrasses with special reference to the Australian region, (pp. 610–627).

  • Lin, Y. P., Teng, T. P., & Chang, T. K. (2002). Multivariate analysis of soil heavy metal pollution and landscape pattern in Changhua county in Taiwan. Landscape and Urban planning, 62, 19–35.

    Article  Google Scholar 

  • Longstaff, B. J., Lonerragan, N. R., O'Donohue, M. J., & Dennison, W. C. (1999). Effects of light deprivation on the survival and recovery of the seagrass Halophila ovalis (R. Br.) Hook. Journal of Experimental Marine Biology and Ecology, 234, 1–27.

    Article  Google Scholar 

  • Lu, X., Wang, L., Li, L. Y., Lei, K., Huang, L., & Kang, D. (2010). Multivariate statistical analysis of heavy metals in street dust of Baoji, NW China. Journal of Hazardous Materials, 173, 744–749.

    Article  CAS  Google Scholar 

  • Lyngby, J. E., & Brix, H. (1982). Seasonal and environmental variation in cadmium, copper, lead and zinc concentrations in eelgrass (Zostera marina L.) in the Limfjord, Denmark. Aquatic Botany, 14, 59–74.

    Article  CAS  Google Scholar 

  • Lyngby, J. E., & Brix, H. (1987). Monitoring of heavy metal contamination in the Limfiord, Denmark, using biological indicators and sediments. Science of the Total Environment, 64, 239–252.

    Article  CAS  Google Scholar 

  • Malea, P., & Haritonidis, S. (1995). Local distribution and seasonal variation of Fe, Pb, Zn, Cu, Cd, Na, K, Ca and Mg concentrations in the seagrass Cymodocea nodosa (Ucria) Aschers in the Antikyra Gulf, Greece. Marine Ecology, 16, 41–56.

    Article  CAS  Google Scholar 

  • Malea, P., Haritonidis, S., & Kevrekidis, T. (1994). Seasonal and local variations of metal concentrations in the seagrass Posidonia Oceanica (L.) Delile in the Antikyra Gulf, Greece. Science of the Total Environment, 153, 225–235.

    Article  CAS  Google Scholar 

  • Mellors, J., Marsh, H., Carruthers, T. J. B., & Waycott, M. (2002). Testing the sediment trapping paradigm of seagrass: do seagrasses influence nutrient status and sediment structure in tropical intertidal environments? Bulletin of Marine Science, 71, 1215–1226.

    Google Scholar 

  • Miranda, J., Andrade, E., Sua'rez, A. L., Ledesma, T. R., Cahill, A., & Wakabayashi, P. H. (1996). A receptor model for atmospheric aerosols from a southwestern site in Mexico City. Atmospheric Environment, 30, 3471–3479.

    Article  CAS  Google Scholar 

  • Nienhuis, P. H. (1986). Background levels of heavy metals in nine tropical seagrass in Indonesia. Marine Pollution Bulletin, 17, 508–511.

    Article  CAS  Google Scholar 

  • Nobi, E. P., Dilipan, E., Thangaradjou, T., Sivakumar, K., & Kannan, L. (2010). Geochemical and geo-statistical assessment of heavy metal concentration in the sediments of different coastal ecosystems of Andaman Islands, India. Estuarine, Coastal and Shelf Science, 87, 253–264.

    Article  CAS  Google Scholar 

  • Nobi, E. P., Dilipan, E., Sivakumar, K., & Thangaradjou, T. (2011). Distribution and biology of seagrass resources of Lakshadweep group of island, India. Indian Journal of Geo Marine Sciences, 40(5), 624–634.

    Google Scholar 

  • Pergent-Martini, C., Leoni, V., Pasqualini, V., Ardizzone, G. D., Balestri, E., Bedini, R., Belluscio, A., Belsher, T., Borg, J., Boudouresque, C. F., Boumaza, S., Bouquegneau, J. M., Buia, M. C., Calvo, C., Cebrian, J., Charbonnel, E., Cinelli, F., Cossu, A., Di Maida, G., Dural, B., Francour, P., Gobert, S., Lepoint, G., Meinesz, A., Molenaar, H., Mansour, H. M., Panayotidis, P., Peirano, A., Pergent, G., Piazzi, L., Pirrotta, M., Relini, G., Romero, J., Lizaso, J. L. S., Semroud, R., Shembri, P., Shili, A., Tomasello, A., & Valimirov, B. (2005). Descriptors of Posidonia oceanica meadows: use & application. Ecological Indicators, 5, 213–230.

    Article  Google Scholar 

  • Philips, R., & McRoy, C. (1980). Handbook of seagrass biology: An ecosystem perspective. NewYork: Garland STPM Press.

    Google Scholar 

  • Prange, J. A., & Dennison, W. C. (2000). Physiological responses of five seagrass species to trace metals. Marine Pollution Bulletin, 41, 327–336.

    Article  CAS  Google Scholar 

  • Rai, L. C., Gaur, J. P., & Kumar, H. D. (1981). Phycology and heavy metal pollution. Biological Review, 56, 99–151.

    CAS  Google Scholar 

  • Sanchiz, C., Carrascosa, A. M. G., & Pastor, A. (2001). Relationships between sediment physic-chemical characteristics and heavy metal bioaccumulation in Mediterranean soft bottom macrophytes. Aquatic Botany, 69, 63–73.

    Article  CAS  Google Scholar 

  • Soares, H. M. V. M., Boaventura, R. A. R., Machado, A. A. S. C., & Esteves da Silva, J. C. G. (1999). Sediments as monitors of heavy metal contamination in the Ave river basin (Portugal): multivariate analysis of data. Environmental Pollution, 105, 311–323.

    Article  CAS  Google Scholar 

  • Tahri, M., Benyaich, F., Bounakhla, M., Bilal, E., Gruffat, J. J., Moutte, J., & Garcia, D. (2005). Multivariate analysis of heavy metal contents in soils. Sediments and water in the region of Meknes (Central Morocco). Environment Monitoring and Assessment, 102, 405–417.

    Article  CAS  Google Scholar 

  • Thangaradjou, T., Nobi, E. P., Dilipan, E., Sivakumar, K., & Susila, S. (2010a). Heavy metal enrichment in seagrasses of Andaman Islands and its implication to the health of the coastal ecosystem. Indian Journal of Marine Sciences, 39, 85–91.

    CAS  Google Scholar 

  • Thangaradjou, T., Sivakumar, K., Dilipan, E., & Nobi, E. P. (2010b). Final technical report of the assessment and evaluation of seagrass resource of India in two oceanic island groups (Andaman and Nicobar and Lakshadweep) through conventional ground survey and satellite remote sensing. Submitted to Government of India, Ministry Of Environment and Forest, p. 213.

  • Tomlinson, D. C., Harris, J. G., Harris, C. R., & Jeffery, D. W. (1980). Problems in the assessment of heavy metals levels in estuaries and the formation of a pollution index. Helgoland Marine Research, 33, 566–575.

    Google Scholar 

  • Valls, M., & Lorenzo, V. D. (2002). Exploring the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiology Review, 26, 327–338.

    CAS  Google Scholar 

  • Walting, R. J. (1981). A manual of methods for use in the southern African marine pollution monitoring programme. In South African Natural Scientific Programmes Report, pp. 81.

  • Ward, T. J. (1987). Temporal variation of metals in the seagrass Posidonia australis and its potential as a sentinel accumulator near a lead smelter. Marine Biology, 95, 315–321.

    Article  CAS  Google Scholar 

  • Waycott, M. (1998). Genetic variation, its assessment and implications to the conservation of seagrasses. Molecular Ecology, 7, 793–800.

    Article  Google Scholar 

  • Wright, J. P., & Jones, C. G. (2006). The concept of organisms as ecosystem engineers ten years on: progress, limitations, and challenges. Bio Science, 56, 203–209.

    Google Scholar 

  • Yasar, D., Aksu, A. E., & Uslu, O. (2001). Anthropogenic pollution in Izmit Bay: heavy metal concentrations in surface sediments. Turkish Journal of Engineering and Environmental Sciences, 25, 299–313.

    CAS  Google Scholar 

Download references

Acknowledgement

We would like to thank Dr. T. Balasubramanian, Dean, Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, and the authorities of the Annamalai University for providing us with the necessary facilities for carrying out this work. We are also thankful to the Ministry of Environment and Forest, New Delhi, for the financial support through the funded project (13/6/2005-EI/RE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Thangaradjou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thangaradjou, T., Raja, S., Subhashini, P. et al. Heavy metal enrichment in the seagrasses of Lakshadweep group of islands—A multivariate statistical analysis. Environ Monit Assess 185, 673–685 (2013). https://doi.org/10.1007/s10661-012-2583-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-2583-3

Keywords