Skip to main content
Log in

Beryllium natural background concentration and mobility: a reappraisal examining the case of high Be-bearing pyroclastic rocks

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Beryllium is widely distributed in soils at low levels, but it can also occur naturally in higher concentrations in a variety of materials exploited for many industrial applications. Beryllium is also one of the most toxic natural elements and is known to be a human carcinogen. A concise account of the literature data on baseline concentrations of Be in soils illustrates the possibility of worldwide presence of areas with a high natural background concentration of Be (up to 300 mg/kg), the crustal abundance of which is generally estimated to be in the range 2–6 mg/kg. Nevertheless, the number of available data is rather limited in comparison with those about other toxic elements such as Pb, Cd and Cr. This has probably caused the choice of low values of concentration level as the reference for the definition of soil contamination: these values are not always realistic and are not applicable to large areas. As a case study, we report and analyse a diffuse, unusually high (up to 80 mg/kg, average approximately 20 mg/kg), natural occurrence of beryllium in loose and poorly consolidated pyroclastic layers related to the Pleistocene activity of the Vico volcano. Additionally, the analysis of Be leachability has been carried out, providing evidence of a not negligible mobility in contrast with the scarce data presented in the literature that usually indicate beryllium as an element with low mobility in oxidising surface environmental conditions. This research marks the beginning of a possible reappraisal of beryllium geochemical behaviour and background levels, providing more realistic reference values for risk assessment and land management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Anderson, M. A., Bertsch, P. M., & Miller, W. P. (1990). Beryllium in selected southeastern soils. Journal of Environmental Quality, 19, 347–348.

    Article  CAS  Google Scholar 

  • Armiento, G., Cremisini, C., Nardi, E., & Pacifico, R. (2011). High geochemical background of potentially harmful elements in soils and sediments: Implications for the remediation of contaminated sites. Chemistry and Ecology, 27(S1), 131–141.

    Article  Google Scholar 

  • Asami, T., & Fukazawa, F. (1985). Beryllium contents of uncontaminated soils and sediments in Japan. Soil Science and Plant Nutrition, 31, 43–53.

    Article  CAS  Google Scholar 

  • Asami, T., & Kubota, M. (1995). Background levels of soils beryllium in several countries. Environmental Geochemistry and Health, 17, 32–38.

    Article  CAS  Google Scholar 

  • ATSDR, Agency for Toxic Substances and Disease Registry. (2002). Toxicological profile for Beryllium. Atlanta: U.S. Department of Health and Human Services, Public Health Service.

    Google Scholar 

  • Barton, W.R., & Goldsmith, C.E. (1968). New England beryllium investigations. U.S. Bureau of Mines Report Investigations 7070.

  • Bertagnini, A., & Sbrana, A. (1986). Il vulcano di Vico: Stratigrafia del complesso vulcanico e sequenze eruttive delle formazioni piroclastiche. Memorie della Società Geologica Italiana, 35, 699–713.

    Google Scholar 

  • Beus, A. A. (1966). Geochemistry of Beryllium. San Francisco: Freeman & Co.

    Google Scholar 

  • Boiocchi, M., Callegari, A., & Ottolini, L. (2006). The crystal structure of piergorite-(Ce), Ca8Ce2 (Al0.5Fe0.5 3+)1(□,Li,Be)2Si6B8O36(OH,F)2: A new borosilicate from Vetralla, Italy, with a modified hellandite-type chain. American Mineralogist, 91(7), 1170–1177.

    Article  CAS  Google Scholar 

  • Borovec, Z. (1996). Evaluation of the concentrations of trace elements in stream sediments by factor and cluster analysis and the sequential extraction procedure. Science of the Total Environment, 177, 237–250.

    Article  CAS  Google Scholar 

  • Brisson, M. J., Ashley, K., Stefaniak, A. B., Ekechukwu, A. A., & Creek, K. L. (2006). Trace –level beryllium analysis in the laboratory and in the field: State of the art, challenges and opportunities. Journal of Environmental Monitoring, 8, 605–611.

    Article  CAS  Google Scholar 

  • Buonasorte, G., Fiordelisi, A., Pandeli, E., Rossi, U., & Sollevanti, F. (1987). Stratigraphic correlations and structural setting of the pre-neoautochthonous sedimentary sequences of Northern Latium. Periodico di Mineralogia, 56, 111–122.

    Google Scholar 

  • Burr, F. F. (1931). Beryllium in Maine. Rocks and Minerals, 6, 8–9.

  • Carlon, C. (Ed.) (2007). Derivation Methods of Soil Screening Values in Europe. A Review and Evaluation of National Procedures Towards Harmonization. European Commission, Joint Research Centre, Ispra, EUR 22805-EN.

  • CCRMP, Natural Resources Canada's Canadian Certified Reference Materials Project (1995). http://www.nrcan.gc.ca/smm-mms/tect-tech/ccrmp/cer-cer/till-1-4-eng.htm. Access 20 February 2011

  • Chen, M., Ma, L. Q., & Harris, W. G. (1999). Baseline concentrations of 15 trace elements in Florida surface soils. Journal of Environmental Quality, 28(4), 1173–1181.

    Article  CAS  Google Scholar 

  • Della Ventura, G., Rossi, P., Parodi, G., Mottana, A., Raudsepp, M., & Prencipe, M. (2000). Stoppaniite, (Fe, Al, Mg)4(Be6Si12O36)*(H2O)2(Na,□) a new mineral of the beryl group from Latium (Italy). European Journal of Mineralogy, 12, 121–127.

    CAS  Google Scholar 

  • Della Ventura, G., Bonazzi, P., Oberti, R., & Ottolini, L. (2002). Ciprianiite and mottanaite-(Ce), two new minerals of the hellandite group from Latium (Italy). American Mineralogist, 87, 739–744.

    CAS  Google Scholar 

  • Drury, J.S., Shriner, C.R., Lewis, L.E., Towill, L.E., & Hammons A.S. (1978). Reviews on the Environmental Effects of Pollutants: VI Beryllium. ORNL/EIS-87. USEPA Rep. 600/1-78-028, Oak Ridge National Lab., Oak Ridge, TN.

  • Foley, S. F., Venturelli, G., Green, D. H., & Toscani, L. (1987). The ultrapotassic rocks: Characteristics, classification and constraints for petrogenetic models. Earth Science Review, 24, 81–134.

    Article  CAS  Google Scholar 

  • Goldschmidt, V.M. (1958). Geochemistry. Oxford University.

  • Goldschmidt, V. M., & Peters, C. (1932). Zur geochemie des Berylliums: Gesell. Wiss. Göttingen. Mathematische Nachrichten- Phisika, 4, 360–376.

    Google Scholar 

  • Griffitts, W. R., & Skilleter, D. N. (1991). Beryllium. In E. Merian (Ed.), Metals and their compounds in the environment—Occurrence, analysis and biological relevance. New York, Basel, Cambridge: VCH Weinheim.

    Google Scholar 

  • Grigor’yev, N. A. (1984). Distribution of Beryllium on the Earth’s surface. Nauka, Moscow. p. 117

  • Hall, G. E. M., Gauthier, G., Pelchat, J. C., Pelchat, P., & Vaive, J. E. (1996). Application of a sequential extraction scheme to ten geological certified reference materials for the determination of 20 elements. Journal of Analytical Atomic Spectrometry, 11, 787–796.

    Article  CAS  Google Scholar 

  • IARC. (1993). Beryllium, Cadmium, Mercury and Exposures in the Glass Manufacturing Industry. IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Humans, vol. 58. Lyon, France: International Agency for Research on Cancer.

  • Kabata-Pendias, A., & Mukherjee, A. B. (2007). Trace elements from soil to human. Berlin: Springer.

    Book  Google Scholar 

  • Kabata-Pendias, A. & Pendias, H. (1984). Trace Elements in Soils and Plants. CRC Press, Inc.

  • Kersten, M. (2002). Speciation of trace metals in sediments. In A. Ure & C. M. Davidson (Eds.), Chemical Speciation in the Environment (pp 301–321). Oxford: Blackwell.

    Google Scholar 

  • Kogel, J. E., Trivedi, N. C., Barker, J. M., & Krukowsk, S. T. (Eds.). (2006). Industrial minerals & rocks: Commodities, markets, and uses. Littleton: Society for Mining, Metallurgy and Exploration.

    Google Scholar 

  • Kupriyanova, I. I. (2002). On the genesis of the Malyshevsk beryllium-emerald deposit (Middle Urals, Russia). Geology of Ore Deposits, 44(4), 276–290.

    Google Scholar 

  • Landergren, S. (1948). On the geochemistry of Swedish iron ores and associated rocks, Sveriges Geol, Undersökn., Ser. C (No. 496).

  • Levinson, A. A. (1962). Beryllium-fluorine mineralization at Aguachile Mountain, Coahuila, Mexico. American Mineralogist, 47, 67–74.

    CAS  Google Scholar 

  • Lindsey, D. A. (1977). Epithermal beryllium deposits in water-laid tuff, Western Utah. Economic Geology, 72, 219–232.

    Article  CAS  Google Scholar 

  • London, D., & Evensen, J.M. (2002). Beryllium in silicic magmas and the origin of beryl-bearing pegmatites. In: Grew ES (ed) Beryllium: Mineralogy, petrology, and Geochemistry. Reviews in Mineralogy & Geochemistry, 50, 445–486

  • Machacek, V., Sulcek, Z., Vacl, J. (1966) Geochemistry of beryllium in the Sokolov Basin. Sbornik Geologickych Ved, 7, 33–39.

    Google Scholar 

  • Mester, Z., Cremisini, C., Ghiara, E., & Morabito, R. (1998). Comparison of two sequential extraction procedures for metal fractionation in sediment samples. Analitica Chimica Acta, 359, 133–142.

    Article  CAS  Google Scholar 

  • Oberti, R., Della Ventura, G., Ottolini, L., Hawthorne, F. C., & Bonazzi, P. (2002). Re-definition, nomenclature and crystal-chemistry of the hellandite group. American Mineralogist, 87, 745–752.

    CAS  Google Scholar 

  • OSHA (2001). Beryllium and beryllium compounds. http://www.osha.gov/dts/chemicalsampling/data/CH_220600.html. (last access January 2012).

  • Ottonello, G., & Serva, L. (2003). Geochemical Baselines of Italy. Pacini editore.

  • Pacifico, R., Adamo, P., Cremisini, C., Spaziani, F., & Ferrara, L. (2007). A geochemical analytical approach for the evaluation of heavy metal distribution in lagoon sediments. Journal of Soils Sediments, 7(5), 313–325.

    Article  CAS  Google Scholar 

  • Paone, A. (2008). Fractional crystallization models and B-Be-Li systematics at Mt. Somma-Vesuvius volcano (Southern Italy). International Journal of Earth Science (Geol. Rundsch), 97, 635–650.

    Article  CAS  Google Scholar 

  • Peccerillo, A. (2007). Plio-Quaternary magmatism in Italy: Roman, Ernici-Roccamonfina, Intra-Apennine and Vulture Provinces. Proceeding of “MANTLE: Seminari di Scienze della Terra”, Genova. http://www.uppermantle.com/italianmagmatism/Peccerillo.pdf.

  • Perini, G. (2004). Evolution and genesis of magmas from Vico volcano, Central Italy: Multiple differentiation pathways and variable parental magmas. Journal of Petrology, 45(1), 139–182.

    Article  CAS  Google Scholar 

  • Perini, G., Conticelli, S., & Francalanci, L. (1997). Inferences on the volcanic history of the Vico volcano, Roman Magmatic Province, central Italy: Stratigraphic, petrographic and geochemical data. Mineralogica et Petrographica Acta, 40, 67–93.

    CAS  Google Scholar 

  • Preinfalk, C., Morteani, G., & Huber, G. (2000). Geochemistry of the granites and pegmatites of the Aracuai pegmatite district, Minas Gerais (Brazil). Chemie Der Erde-Geochemistry, 60, 305–326.

    CAS  Google Scholar 

  • Pueyo, M., Rauret, G., Luck, D., Yli-Halla, M., Muntau, H., Quevauviller, P., & López-Sánchez, J. F. (2001). Certification of the extractable contents of Cd, Cr, Cu, Ni, Pb and Zn in a fresh water sediment following a collaboratively tested and optimised three-step sequential extraction procedure. Journal of Environmental Monitoring, 3, 243–250.

    Article  CAS  Google Scholar 

  • Rankama, K., & Sahama, T.G. (1950). Beryllium. In University of Chicago Press and Cambridge University Press Geochemistry.

  • Rauret, G., López-Sánchez, J. F., Sahuquillo, A., Rubio, R., Davidson, C., Ure, A., & Quevauviller, P. (1999). Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. Journal of Environmental Monitoring, 1, 57–61.

    Article  CAS  Google Scholar 

  • Rauret, G., López-Sánchez, J. F., Sahuquillo, A., Barahona, E., Lachica, A., Ure, A. M., Davidson, C. M., Gomez, A., Lück, D., Bacon, J., Yli-Halla, H., Muntau, H., & Quevauiller, P. (2000). Application of a modified BCR sequential extraction (three-step) procedure for the determination of extractable trace metal contents in a sewage sludge amended soil reference material (CRM 483), complemented by three-year stability study of acetic acid and EDTA extractable metal content. Journal of Environmental Monitoring, 2, 228–233.

    Article  CAS  Google Scholar 

  • Sahama, T. G. (1945). On the chemistry of the East Fenno-scandian rapakivi granites. Bulletin of the Geological Society of Finland, 136, 15–67.

    Google Scholar 

  • Sainsbury, C.L. (1964). Geology of Lost River mine area, Alaska. U.S. Geological Survey Bulletin 1129.

  • Salminen, R., (Chief-editor), Batista, M.J., Bidovec, M., Demetriades, A., De Vivo, B., et al. (2005). Geochemical atlas of Europe. Part 1: Background information, methodology and maps. Espoo, Geological Survey of Finland, http://www.gtk.fi/publ/foregsatlas/.

  • Shacklette, H.T., & Boerngen, J.G. (1984). Element concentrations in soils and other surficial materials of the conterminous United States. U. S. Geological Survey Professional Paper 1270.

  • Shilin, L. L., & Tsareva, L. P. (1957). The abundance of beryllium in rocks and pegmatites from the Lovozero and Khibina Tundra. Geochemistry URSS (English transl), 2, 383–392.

    Google Scholar 

  • Sollevanti, F. (1983). Geologic, volcanologic and tectonic setting of the Vico-Cimino area, Italy. Journal of Volcanology and Geothermal Research, 17, 203–217.

    Article  CAS  Google Scholar 

  • Szelenyi, T. (1937) Bauxitok berylliumtartalmanak szinkepanalytikai meghatarozasa. Mathematik und Naturwissenschaft Anzeiger der Ungarischen Akademie der Wissenschaften, 56, 231. (summary in German)

  • Taiwo, O. A., Slade, M. D., Cantley, L. F., Kirsche, S. R., Wesdock, J. C., & Cullen, M. R. (2010). Prevalence of beryllium sensitization among aluminium smelter workers. Occupational Medicine, 60(7), 569–571.

    Article  CAS  Google Scholar 

  • Ure, A., & Davidson, C. M. (2002). Chemical speciation in the environment. Oxford: Blackwell.

    Book  Google Scholar 

  • Ure, A. M., Quevauviller, P., Muntau, H., & Griepink, B. (1993). Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities. International Journal of Environmental Analytical Chemistry, 51(1–4), 135–151.

    Article  CAS  Google Scholar 

  • USEPA (1980). Ambient Water Quality Criteria Doc: Beryllium p.A-1 USEPA 440/5-80-024.

  • USEPA (1987). Health assessment document for beryllium. Research Triangle Park, North Carolina, US Environmental Protection Agency, Office of Research and development (EPA Report No. 600/8-84-026 F).

  • USEPA (2010). ProUCL Version 4.00.05 User Guide (Draft). EPA/600/R-07/038, May 2010. http://www.epa.gov/esd/tsc/TSC_form.htm (last access March 2011).

  • Vesely, J., Norton, S.A., Skrivan, P., Majer, V., Kram, P., Navratil, T., & Kaste, J.M. (2002) Environmental chemistry of beryllium. In: Grew ES (ed) Beryllium: Mineralogy, petrology, and geochemistry. Reviews in mineralogy and geochemistry, 50, 291–317.

  • Vetuschi Zuccolini, M., & Cipolli, F. (2003). The National Geochemical Archive of Italy. In: Ottonello, G., & Serva, L. (Eds), Geochemical Baselines of Italy (pp 51–65). Pacini editore.

  • Villemant, B., & Fléhoc, C. (1989). U-Th fractionation in K-rich magma genesis: the Vico volcano, Central Italy. Earth and Planetary Science Letters, 91, 312–326.

    Article  CAS  Google Scholar 

  • Washington, H. S. (1906). The Roman Comagmatic Region. Washington, DC: Carnegie Institution of Washington.

    Google Scholar 

  • Wedepohl, K.H. (ed) (1969). Handbook of Geochemistry II/1 Springer-Verlag Berlin-Heidelberg-New York.

  • WHO (1990). Beryllium. Environmental Health Criteria 106. World Health Organization, Geneva, Switzerland.

  • Xiangdong, L., Coles, B. J., Ramsey, M. H., & Thornton, I. (1995). Sequential extraction of soils for multielement analysis by ICP-AES. Chemical Geology, 124, 109–123.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanna Armiento.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Armiento, G., Bellatreccia, F., Cremisini, C. et al. Beryllium natural background concentration and mobility: a reappraisal examining the case of high Be-bearing pyroclastic rocks. Environ Monit Assess 185, 559–572 (2013). https://doi.org/10.1007/s10661-012-2575-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-2575-3

Keywords

Navigation