Skip to main content
Log in

New kinetic-spectrophotometric method for monitoring the concentration of iodine in river and city water samples

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

A new kinetic method has been developed for the determination of iodine in water samples. The method is based on the catalytic effect of I with the oxidation of Indigo Carmine (IC) by KBrO3 in the sulfuric acid medium. The optimum conditions obtained are 0.16 M sulfuric acid, 1 × 10−3 M of IC, 1 × 10−2 M KBrO3, reaction temperature of 35°C, and reaction time of 80 s at 612 nm. Under the optimized conditions, the method allowed the quantification of I in a range of 12–375 ng/mL with a detection limit of 0.46 ng/mL. The method was applied to the determination of iodine in river and city water samples with the satisfactorily results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbasi, S., Farmany, A., Gholivand, M. B., Naghipour, A., Abbasi, F., & Khani, H. (2009). Kinetic-spectrophotometry method for determination of ultra trace amounts of aluminum in food samples. Food Chemistry, 116, 1019–1023.

    Article  CAS  Google Scholar 

  • Agrawal, O., Sunita, G., & Gupta, V. K. (1999). A sensitive colorimetric method for the micro determination of iodine in marine water. Talanta, 49, 923–928.

    Article  CAS  Google Scholar 

  • Andrási, E., Kučera, J., Bélavári, C. S., & Mizera, J. (2007). Determination of iodine in human brain by epithermal and radiochemical neutron activation analysis. Microchemical Journal, 85, 157–163.

    Article  Google Scholar 

  • Bhagat, P. R., Pandey, A. K., Acharya, R., Nair, G. C., Rajurkar, N. S., & Reddy, A. V. R. (2007). Selective preconcentration and determination of iodine species in milk samples using polymer inclusion sorbent. Talanta, 71, 1226–1232.

    Article  CAS  Google Scholar 

  • Das, P., Gupta, M., Jain, A., & Verma, K. K. (2004). Single drop microextraction or solid phase microextraction–gas chromatography–mass spectrometry for the determination of iodine in pharmaceuticals, iodized salt, milk powder and vegetables involving conversion into 4-iodo-N,N-dimethylaniline. Journal of Chromatography. A, 1023, 33–39.

    Article  CAS  Google Scholar 

  • Fernández-Sánchez, L. M., Bermejo-Barrera, P., Fraga-Bermudez, J. M., Szpunar, J., & Lobinski, R. (2007). Determination of iodine in human milk and infant formulas. Journal of Trace Elements in Medicine and Biology, 21, 10–13.

    Article  Google Scholar 

  • Grinberg, P., & Sturgeon, R. E. (2009). Ultra-trace determination of iodine in sediments and biological material using UV photochemical generation-inductively coupled plasma mass spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 64, 235–241.

    Article  Google Scholar 

  • Hilp, M. (2002). Determination of iodine values according to Hanu using 1,3-dibromo-5,5-dimethylhydantoin (DBH): Analytical methods of pharmacopeias with DBH. Journal of Pharmaceutical and Biomedical Analysis, 28, 81–86.

    Article  CAS  Google Scholar 

  • Huang, M. D., Becker-Ross, H., Florek, S., Okruss, M., Welz, B., & Morés, S. (2009). Determination of iodine via the spectrum of barium mono-iodide using high-resolution continuum source molecular absorption spectrometry in a graphite furnace. Spectrochimica Acta Part B: Atomic Spectroscopy, 64, 697–701.

    Article  Google Scholar 

  • Macours, P., Aubry, J. C., Hauquier, B., Boeynaems, J. M., Goldman, S., & Moreno-Reyes, R. (2008). Determination of urinary iodine by inductively coupled plasma mass spectrometry. Journal of Trace Elements in Medicine and Biology, 22, 162–165.

    Article  CAS  Google Scholar 

  • Mahesh, D. L., Deosthale, Y. G., & Narasinga Rao, B. S. (1992). A sensitive kinetic assay for the determination of iodine in foodstuffs. Food Chemistry, 43, 51–56.

    Article  CAS  Google Scholar 

  • Mason, M. B. (2007). Vitamins, trace minerals, and other micronutrients. In L. Goldman & D. Ausiello (Eds.), Cecil Medicine (23rd ed., Vol. 237). Philadelphia: Saunders Elsevier.

    Google Scholar 

  • Murillo, M., Carrión, N., Quintana, M., Sanabria, G., Ríos, M., Duarte, L., et al. (2005). Determination of selenium and iodine in human thyroids. Journal of Trace Elements in Medicine and Biology, 19, 23–27.

    Article  CAS  Google Scholar 

  • Pena-Pereira, F., Lavilla, I., & Bendicho, C. (2009). Headspace single-drop microextraction coupled to microvolume UV–vis spectrophotometry for iodine determination. Analytica Chimica Acta, 631, 223–228.

    Article  CAS  Google Scholar 

  • Rakel, D. (2007). Integrative Medicine (2nd ed.). Philadelphia: Saunders Elsevier.

    Google Scholar 

  • Tomiyasu, T. T., Nanaka, M., Uchikado, M., Anazawa, K., & Sakamoto, H. (2004). Kinetic determination of total iodine in urine and foodstuffs using a mixed acid as a pretreatment agent. Analytical Sciences, 20, 391–393.

    Article  CAS  Google Scholar 

  • Varga, I. (2007). Iodine determination in dietary supplement products by TXRF and ICP-AES spectrometry. Microchemical Journal, 85, 127–131.

    Article  CAS  Google Scholar 

  • Wu, D., Deng, H., Wang, W., & Xiao, H. (2007). Catalytic spectrophotometric determination of iodine in coal by pyrohydrolysis decomposition. Analytica Chimica Acta, 601, 183–188.

    Article  CAS  Google Scholar 

  • Yao, S.-Z., Chen, P., & Wei, W.-Z. (2009). Determination of iodine in human brain by epithermal and radiochemical neutron activation analysis. Food Chemistry, 67, 311–316.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Farmany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farmany, A., Khosravi, A., Abbasi, S. et al. New kinetic-spectrophotometric method for monitoring the concentration of iodine in river and city water samples. Environ Monit Assess 185, 553–558 (2013). https://doi.org/10.1007/s10661-012-2574-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-2574-4

Keywords

Navigation