Skip to main content

Advertisement

Log in

Phosphorus sorption–desorption behaviour of river bed sediments in the Abshineh river, Hamedan, Iran, related to their composition

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Phosphorus (P) sorption by sediments may play a vital role in buffering P concentration in the overlying water column. To characterize P sorption–desorption in the river bed sediments, 17 bed sediment samples collected from Abshineh river, in a semi arid region, Hamedan, western Iran were studied through a batch experiment and related to sediment composition. The sorbed fraction ranged from 4.4% to 5.4% and from 38.5% to 86.0% of sorption maxima when 20 and 1,500 mg P kg−1, respectively, was added to the sediment samples. Phosphorus sorption curves were well fitted to the Langmuir model. Zero equilibrium P concentration ranged from 0.10 to 0.51 mg P l−1 and varied with sediment characteristics. Phosphorus desorption differed strongly among the studied bed sediments and ranged from 10.8% to 80.2% when 1,500 mg P kg−1 was added. The results of the geochemical modelling indicated that even under low P addition (2 mg l−1), the solutions are mainly saturated with respect to hydroxyapatite and ß-tricalcium phosphate minerals and undersaturated with respect to other Ca and Mg minerals, whereas under higher P addition (150 mg l−1), most Ca–P solid phases, except the most soluble mineral (brushite), will likely precipitate. A Langmuir sorption maximum was positively correlated with carbonate calcium. Estimated P retention capacity of the bed sediments are generally lower and zero equilibrium P concentration values higher in upstream sites than at the downstream sites, suggesting that sediments in upstream and downstream may act as source and sink of P, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allison, J. D., Brown, D. S., & Novo-Gradac, K. J. (1991). MINTEQA2/PRODEFA2, a geochemical assessment model for environmental systems: Version 3.0 users manual. EPA/600/3-91/021. Athens: US Environmental Protection Agency.

  • Amer, F., Mahmoud, A. A., & Sabet, V. (1985). Zeta potential and surface area of calcium carbonate as related to phosphate sorption. Soil Science Society Of America Journal, 49, 1137–1142.

    Article  CAS  Google Scholar 

  • An, W. C., & Li, X. M. (2009). Phosphate adsorption characteristics at the sediment-water interface and phosphorus fractions in Nansi lake, China. Environmental Monitoring and Assessment, 148, 173–184.

    Article  CAS  Google Scholar 

  • Axt, J. R., & Walbridge, M. R. (1999). Phosphate removal capacity of palustrine forested wetlands and adjacent uplands in Virginia. Soil Science Society of America Journal, 63, 1019–1031.

    Article  CAS  Google Scholar 

  • Baharifar, A., Moinevaziri, H., Bellon, H., & Pique, A. (2004). The crystalline complexes of Hamadan (Sanandaj-Sirjan zone, western Iran): Metasedimentary Mezoic sequences affected by Late Cretaceous tectono-metamorphic and plutonic events. Comptes Rendus Geoscience, 336, 1443–1452.

    Article  CAS  Google Scholar 

  • Barrow, N. J. (1980). Evaluation and utilization of residual phosphorus in soils. In F. E. Khasawneh, E. C. Sample, & E. J. Kamprath (Eds.), The role of phosphorus in agriculture (pp. 330–360). Madison: American Society of Agronomy.

    Google Scholar 

  • Barrow, N. J. (1989). Modelling the effects of pH on phosphate sorption by soils. Journal of Soil Science, 35, 283–297.

    Article  Google Scholar 

  • Berg, U., Neumann, T., Donnert, D., Nüesch, R., & Stüben, D. (2004). Sediment capping in eutrophic lakes—efficiency of undisturbed calcite barriers to immobilize phosphorus. Applied Geochemistry, 19, 1759–1771.

    Article  CAS  Google Scholar 

  • Bolster, C. H. (2008). Revisiting a statistical shortcoming when fitting the Langmuir model to sorption data. Journal of Environmental Quality, 3, 1986–1992.

    Article  Google Scholar 

  • Bolster, C. H., & Hornberger, G. M. (2007). On the use of linearized Langmuir equations. Soil Science Society of America Journal, 71, 1796–1806.

    Article  CAS  Google Scholar 

  • Borggaard, O. K., Jorgensen, S. S., Moberg, J. P., & Raben-Lange, B. (1990). Influence of organic matter on phosphate adsorption by aluminium and iron oxides in sandy soils. European Journal of Soil Science, 41, 443–449.

    Article  CAS  Google Scholar 

  • Borggaard, O. K., Raben-Lange, B., Gimsing, A. L., & Strobel, B. W. (2004). Influence of humic substances on phosphate adsorption by aluminium and iron oxides. Geoderma, 127, 270–279.

    Article  Google Scholar 

  • Bridgham, S. D., Updegraff, K., & Pastor, J. (2001). A comparison of nutrient availability indices along an ombrotrophic-minerotrophic gradient in Minnesota wetlands. Soil Science Society of America Journal, 65, 259–269.

    Article  CAS  Google Scholar 

  • Bubba, D. M., Arias, C. A., & Brix, H. (2003). Phosphorus adsorption maximum of sands for use as media in subsurface flow constructed reed beds as measured by the Langmuir isotherm. Water Research, 37, 3390–3400.

    Article  Google Scholar 

  • Camargo, J. A., Alonso, A., & de la Puente, M. (2005). Eutrophication downstream from small reservoirs in Mountain Rivers of Central Spain. Water Research, 39, 3376–3384.

    Article  CAS  Google Scholar 

  • Caraco, N. F., Cole, J. J., & Likens, G. E. (1989). Evidence of sulphate-controlled phosphorus release from sediments of aquatic systems. Nature, 341, 316–318.

    Article  CAS  Google Scholar 

  • Carreira, J. A., Viñegla, B., & Lajtha, K. (2006). Secondary CaCO3 and precipitation of P–Ca compounds control the retention of soil P in arid ecosystems. Journal of Arid Environments, 64, 460–473.

    Article  Google Scholar 

  • Castro, B., & Torrent, J. (1998). Phosphate sorption by calcareous Vertisols and Inceptisols as evaluated from extended P-sorption curves. European Journal of Soil Science, 49, 661–667.

    Article  Google Scholar 

  • Freeman, J. S., & Rowell, D. L. (1981). The adsorption and precipitation of phosphate onto calcite. Journal of Soil Science, 32, 75–84.

    Article  CAS  Google Scholar 

  • Froelich, P. N. (1988). Kinetic control of dissolved phosphate in natural rivers and estuaries: A primer on the phosphate buffer mechanism. Limnology and Oceanography, 33, 649–668.

    Article  CAS  Google Scholar 

  • Gustafsson, J.P. (2005). Visual MINTEQ ver 2.32. Stokholm, Sweden: Department of Land and Water Resources Engineering, Royal Institute of Technology. http://hem.bredband.net/b108693.

  • Haggard, B. E., Stanley, E. H., & Hyler, R. (1999). Sediment-phosphorus relationships in three Northcentral Oklahoma streams. Transaction of ASAE (American Society of Agricultural Engineers), 42, 1709–1714.

    CAS  Google Scholar 

  • Heathwaite, A. L., & Johnes, P. J. (1996). Contribution of nitrogen species and phosphorus fractions to stream water quality in agricultural catchments. Hydrological Processes, 10, 971–983.

    Article  Google Scholar 

  • Holford, I. C. R. (1979). Evaluation of soil phosphate buffering indices. Australian Journal of Soil Research, 17, 495–504.

    Article  CAS  Google Scholar 

  • House, W. A., & Denison, F. H. (2000). Factors influencing the measurement of equilibrium phosphate concentrations in river sediments. Water Research, 34, 1187–1200.

    Article  CAS  Google Scholar 

  • Jalali, M. (2007a). Phosphorous status and sorption characteristics of some calcareous soils of Hamadan, western Iran. Environmental Geology, 53, 365–374.

    Article  CAS  Google Scholar 

  • Jalali, M. (2007b). Hydrochemical identification of groundwater resources and their changes under the impacts of human activity in the Chah basin in western Iran. Environmental Monitoring and Assessment, 130, 347–364.

    Article  CAS  Google Scholar 

  • Jalali, M. (2009). Phosphorous concentration, solubility and species in the groundwater in a semi-arid basin, southern Malayer, western Iran. Environmental Geology, 57, 1011–1020.

    Article  CAS  Google Scholar 

  • Jalali, M. (2010). Phosphorus fractionation in river sediments, Hamadan, western Iran. Soil and Sediment Contamination, 19, 560–572.

    Article  CAS  Google Scholar 

  • Jarvie, H. P., Jürgens, M. D., Williams, R. J., Neal, C., Davies, J. J. L., Barrett, C. (2005). Role of river bed sediments as sources and sinks of phosphorus across two major eutrophic UK river basins: The Hampshire Avon and Herefordshire Wye. Journal of Hydrologic Engineering, 304, 51–74.

    CAS  Google Scholar 

  • Kim, L. H., Choi, E., & Stenstrom, M. K. (2003). Sediment characteristics, phosphorus types and phosphorus release rates between river and lake sediments. Chemosphere, 50, 53–61.

    Article  CAS  Google Scholar 

  • Kitano, Y., Okumura, M., & Idogaki, M. (1978). Uptake of phospahate ions by calcium carbonate. Geochemical Journal, 12, 29–37.

    Article  CAS  Google Scholar 

  • Lai, M. Y. F., & Lam, K. Ch. (2008). Phosphorus retention and release by sediments in the eutophic Mai Po Marshes, Hong Kong. Marine Pollution Bulletin, 57, 349–356.

    Article  CAS  Google Scholar 

  • Lair, G. J., Zehetner, Z., Khan, Z. H., & Gerzabek, M. H. (2009). Phosphorus sorption–desorption in alluvial soils of a young weathering sequence at the Danube River. Geoderma, 149, 39–44.

    Article  CAS  Google Scholar 

  • Lake, B. A., Coolidge, K. M., Norton, S. A., & Amirbahman, A. (2007). Factors contributing to the internal loading of phosphorus from anoxic sediments in six Maine, USA, lakes. Science of the Total Environment, 373, 534–541.

    Article  CAS  Google Scholar 

  • Li, B. G., & Guo, B. S. (2006). Chemical forms of inorganic phosphorus in sediments in the middle of the Yellow river. Journal of Agro-Environmental Science, 25, 1607–1610.

    CAS  Google Scholar 

  • Lindsay, W. L. (1979). Chemical equilibria in soils. New York: Wiley.

    Google Scholar 

  • Lindsay, W. L., Vlek, P. L. G., & Chien, S. H. (1989). Phosphate minerals. In J. B. Dixon & S. B. Weed (Eds.), Minerals in soil environments (pp. 1089–1130). Madison: Soil Science Society of America.

    Google Scholar 

  • Litaor, M. I., Reichmann, O., Haim, A., Auerswald, K., & Shenker, M. (2005). Sorption characteristics of phosphorus in peat soils of a semiarid altered wetland. Soil Science Society of America Journal, 69, 1658–1665.

    Article  CAS  Google Scholar 

  • Loeppert, R. H., & Inskeep, W. P. (1996). Iron. In D. L. Sparks (Ed.), Methods of soil analysis: Chemical methods, Part 3 (pp. 639–664). Madison: ASA and SSSA.

    Google Scholar 

  • Lopez, P., Lluch, X., Vidal, M., & Morgui, J. A. (1996). Adsorption of phosphorus on sediments of the Balearic Islands (Spain) related to their composition. Estuarine, Coastal and Shelf Science, 42, 185–196.

    Article  CAS  Google Scholar 

  • Lottig, N. R., & Stanley, E. H. (2007). Benthic sediment influence on dissolved phosphorus concentrations in a headwater stream. Biogeochemical, 84, 297–309.

    Article  CAS  Google Scholar 

  • Machesky, M. L., Holm, T. R., & Slowikowski, J. A. (2010). Phosphorus speciation in stream bed sediments from an agricultural watershed: Solid-phase associations and sorption behavior. Aquatic Geochemistry, 16, 639–662.

    Article  CAS  Google Scholar 

  • Makris, K. C., Harris, W. G., O’Connor, J. A., & EI-Shall, H. (2005). Long-term phosphorus effects on evolving physicochemical properties of iron and aluminum hydroxides. Journal of Colloid and Interface Science, 287, 552–560.

    Article  CAS  Google Scholar 

  • Matar, A., Torrent, J., & Ryan, J. (1992). Soil and fertilizer phosphorus and crop responses in the dryland Mediterranean zone. Advance in Soil Science, 18, 81–146.

    Article  CAS  Google Scholar 

  • McDowell, R., Sharpley, A., Brookes, P. H., & Poulton, P. (2001). Relationship between soil test phosphorus and phosphorus release to solution. Soil Science, 166, 137–149.

    Article  CAS  Google Scholar 

  • Mehra, O. P., & Jackson, M. L. (1960). Iron oxide removal from soils and clays by dithionite-citrate systems buffered with sodium bicarbonate. Clay and Clay Mineral, 7, 317–327.

    Article  Google Scholar 

  • Murphey, J., & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31–36.

    Article  Google Scholar 

  • Nwoke, O. C., Vanlauwe, B., Diels, J., Sanginga, N., Osonubi, O., & Merckx, R. (2003). Assessment of labile phosphorus fractions and adsorption characteristics in relation to soil properties of West African savanna soils. Agriculture, Ecosystems & Environment, 100, 285–294.

    Article  CAS  Google Scholar 

  • Olila, O. G., & Redy, K. R. (1997). Influence of redox potential on phosphorus uptake by sediments in two sub-tropical eutrophic lakes. Hydrobiologia, 345, 45–57.

    Article  CAS  Google Scholar 

  • Olsen, S. L., & Sommers, L. E. (1982). Phosphorus. In A. L. Page et al. (Eds.), Methods of soil analysis, Part 2 (pp. 403–427). Madison: American Society of Agronomy.

    Google Scholar 

  • Pansu, M., & Gautheyrou, J. (2006). Handbook of soil analysis, mineralogical, organic and inorganic analysis. Heidelberg: Springer-Verlag Berli.

    Google Scholar 

  • Peng, J.-F., Wang, B.-Z., Song, Y.-H., Yuan, P., & Liu, Z. (2007). Adsorption and release of phosphorus in the surface sediment of a wastewater stabilization pond. Ecological Engineering, 31, 92–97.

    Article  Google Scholar 

  • Perry, J. J., Staley, J. T., & Lory, S. (2002). Microbial life. Sunderland: Sinauer Associates. 811.

    Google Scholar 

  • Raven, K. P., & Hossner, L. R. (1994). Sorption and desorption quantity-intensity parameters related to plant-available soil phosphorus. Soil Science Society of America Journal, 58, 405–410.

    Article  Google Scholar 

  • Richardson, C. J., & Vaithiyanathan, P. (1995). Phosphorus characteristics of Everglade soils along a eutrophic gradient. Soil Science Society of America Journal, 59, 1782–1788.

    Article  CAS  Google Scholar 

  • Rowell, D. L. (1994). Soil science: Methods and applications. Harlow: Longman Scientific and Technical.

    Google Scholar 

  • Sanyal, S. K., & De Datta, S. K. (1991). Chemistry of phosphorus transformations in soil. Advances in Soil Sciences, 16, 1–20.

    Google Scholar 

  • Sepahi, A. (1999). Petrology of the Alvand plutonic complex with special reference on granitoids. Ph.D. Thesis. Tehran, Iran: Tarbiat-Moallem University. (in Persian).

  • Sharpley, A. N. (1996). Availability of residual phosphorus in manured soils. Soil Science Society of America Journal, 60, 1459–1466.

    Article  CAS  Google Scholar 

  • Sharpley, A. N., & Smith, S. J. (1989). Prediction of soluble phosphorus transport in agricultural runoff. Journal of Environmental Quality, 18, 313–316.

    Article  CAS  Google Scholar 

  • Sims, J. T., Simard, R. R., & Joern, B. C. (1998). Phosphorus losses in agricultural drainage: Historical perspective and current research. Journal of Environmental Quality, 27, 277–293.

    Article  CAS  Google Scholar 

  • Smith, D. R., Haggard, B. E., Warnemuende, E. A., & Huang, C. (2005). Sediment phosphorus dynamics for three tile fed drainage ditches in Northeast Indiana. Agricultural Water Management, 71, 19–32.

    Article  Google Scholar 

  • Stutter, M. I., & Lumsdona, D. J. (2008). Interactions of land use and dynamic river conditions on sorption equilibria between benthic sediments and river soluble reactive phosphorus concentrations. Water Research, 42, 4249–4260.

    Article  CAS  Google Scholar 

  • Sui, Y., Thompson, M. L., & Mize, C. W. (1999). Redistribution of biosolids-derived total P applied to a Mollisol. Journal of Environmental Quality, 28, 1068–1074.

    Article  CAS  Google Scholar 

  • Tian, J.-R., & Zhou, P.-J. (2008). Phosphorus fractions and adsorption characteristics of floodplain sediments in the lower reaches of the Hanjiang river, China. Environmental Monitoring and Assessment, 137, 233–241.

    Article  CAS  Google Scholar 

  • Tiessen, H., & Moir, J. O. (1993). Characterization of available P by sequential extraction. In M. R. Carter (Ed.), Soil sampling and methods of analysis (pp. 75–86). Boca Raton: Canadian Society of Soil Science (Lewis Publishers).

    Google Scholar 

  • Torrent, J. (1997). Interactions between phosphate and iron oxide. In K. Auerswald, H. Stanjek, & J. M. Bigham (Eds.), Soils and environment, advance geology ecology (Vol. 30, pp. 321–344). Reiskirchen: Catena Verlag.

    Google Scholar 

  • Tu, C., Zheng, C. R., & Chen, K. M. (2002). Effect of heavy metals on phosphorus retention by typic udic ferrisols: Equilibrium and kinetics. Pedosphere, 12, 15–24.

    CAS  Google Scholar 

  • van Riemsdjik, W. H., Weststrate, F. A., & Bolt, G. H. (1975). Evidence of a new aluminium phosphate phase from reaction rate of phosphate with aluminium hydroxide. Nature, 257, 473–474.

    Article  Google Scholar 

  • Varinderpal-Singh, Dhillon, N. S., & Brar, B. S. (2006). Influence of long-term use of fertilizers and farmyard manure on the adsorption-desorption behaviour and bioavailability of phosphorus in soils. Nutrient Cycling in Agroecosystems, 75, 67–78.

    Article  CAS  Google Scholar 

  • Villapando, R. R., & Graetz, D. A. (2001). Phosphorus sorption and desorption properties of the spodic horizon from selected Florida spodosols. Soil Science Society of America Journal, 65, 331–339.

    Article  CAS  Google Scholar 

  • Wang, S. R., Jin, X. C., Bu, Q. Y., Zhou, X. N., & Wu, F. C. (2006). Effects of particle size, organic matter and ionic strength on the phosphate sorption in different tropic lake sediments. Journal of Hazardous Materials, 128, 95–105.

    Article  Google Scholar 

  • Wang, S. R., Jin, X. C., Zhao, H. C., Zhou, X. N., & Wu, F. C. (2007). Effect of organic matter on the sorption of dissolved organic and inorganic phosphorus in lake sediments. Colloids and Surfaces A, 297, 154–162.

    Article  CAS  Google Scholar 

  • Wang, Y., Shen, Z., Niu, J., & Liu, R. (2009). Adsorption of phosphorus on sediments from the Three-Gorges Reservoir (China) and the relation with sediment composition. Journal of Hazardous Materials, 162, 92–98.

    Article  CAS  Google Scholar 

  • Yang, Y. G., He, Z. L., Lin, Y., & Stoffella, P. J. (2010). Phosphorus availability in sediments from a tidal river receiving runoff water from agricultural fields. Agricultural Water Management, 97, 1722–1730.

    Article  Google Scholar 

  • Zhuan-xi, L., Bo, Z., Jia-liang, T., & Tao, W. (2009). Phosphorus retention capacity of agricultural headwater ditch sediments under alkaline condition in purple soils area, China. Ecological Engineering, 35, 57–64.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Jalali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jalali, M., Peikam, E.N. Phosphorus sorption–desorption behaviour of river bed sediments in the Abshineh river, Hamedan, Iran, related to their composition. Environ Monit Assess 185, 537–552 (2013). https://doi.org/10.1007/s10661-012-2573-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-2573-5

Keywords

Navigation