Skip to main content
Log in

Effect of dust load on the leaf attributes of the tree species growing along the roadside

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Dust is considered as one of the most widespread air pollutants. The objective of the study was to analyse the effect of dust load (DL) on the leaf attributes of the four tree species planted along the roadside at a low pollution Banaras Hindu University (BHU) campus and a highly polluted industrial area (Chunar, Mirzapur) of India. The studied leaf attributes were: leaf area, specific leaf area (SLA), relative water content (RWC), leaf nitrogen content (LNC), leaf phosphorus content (LPC), chlorophyll content (Chl), maximum stomatal conductance (Gsmax), maximum photosynthetic rate (A max) and intrinsic water-use efficiency (WUEi). Results showed significant effect of sites and species for DL and the leaf attributes. Average DL across the four tree species was greater at Chunar, whereas, the average values of leaf attributes were greater at the BHU campus. Maximum DL was observed for Tectona grandis at Chunar site and minimum for Syzygium cumini at BHU campus. Across the two sites, maximum value of SLA, Chl and Gsmax were exhibited by S. cumini, whereas, the greatest value of RWC, LNC, LPC, A max and WUEi were observed in Anthocephalus cadamba. A. cadamba and S. cumini exhibited 28 and 27 times more dust accumulation, respectively, at the most polluted Chunar site as compared to the BHU campus. They also exhibited less reduction in A max due to dust deposition as compared to the other two species. Therefore, both these species may be promoted for plantation along the roadside of the sites having greater dust deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agrawal, M., Singh, B., Rajput, M., Marshall, F., & Bell, J. N. B. (2003). Effect of air pollution on peri-urban agriculture: a case study. Environmental Pollution, 126(3), 323–329.

    Article  CAS  Google Scholar 

  • Anda, A. (1986). Effect of cement kiln dust on the radiation balance and yields of plants. Environmental Pollution, 40(3), 249–256.

    CAS  Google Scholar 

  • Anderson, J. E., & McNaughton, S. J. (1973). Effects of low soil temperature on transpiration, photosynthesis, leaf relative water content, and growth among elevationally diverse plant populations. Ecology, 54(6), 1220–1233.

    Article  Google Scholar 

  • Arslan, M., & BoyBay, M. (1990). A study on the characterization of dust fall. Atmospheric Envrionment, 24(10), 2667–2671.

    Article  Google Scholar 

  • Auerbach, N. A., Walker, M. D., & Walker, D. A. (1997). Effects of roadside disturbance on substrate and vegetation properties in arctic tundra. Ecological Applications, 7(1), 218–235.

    Article  Google Scholar 

  • Baby, S., Singh, N. A., Shrivastava, P., Nath, S. R., Kumar, S. S., Singh, D., & Vivek, K. (2008). Impact of dust emission on plant vegetation of vicinity of cement plant. Environmental Engineering and Management Journal, 7(1), 31–35.

    Google Scholar 

  • Beckett, K. P., Freer-Smith, P. H., & Taylor, G. (1998). Urban woodlands: their role in reducing the effects of particulate pollution. Environmental Pollution, 99(3), 347–360.

    Article  CAS  Google Scholar 

  • Black, C. A. (1965). Methods of soil analysis: part I physical and mineralogical properties. Madison: American Society of Agronomy.

    Google Scholar 

  • Bohne, H. (1963). Schadlichkeit von staub aus zementwerken fur waldbestande. Allgemeine Forst und Jagdzeitung, 18, 107–111.

    Google Scholar 

  • Brandt, C. J., & Rhoades, R. (1973). Effects of limestone dust accumulation on composition of a forest community. Environmental Pollution, 3(3), 217–225.

    Google Scholar 

  • Centritto, M., Loreto, R., Massacci, A., Pietrini, R., Villani, M. C., & Zacchine, M. (2000). Improved growth and water use efficiency of cherry saplings under reduced light intensity. Ecological Research, 15(4), 385–392.

    Article  Google Scholar 

  • Chaturvedi, R. K., Raghubanshi, A. S., & Singh, J. S. (2011). Leaf attributes and tree growth in a tropical dry forest. Journal of Vegetation Science, 22(5), 917–931.

    Article  Google Scholar 

  • Chauhan, A., & Sanjeev. (2008). Impact of dust pollution on photosynthetic pigments of some selected trees grown at nearby of stone-crushers. Environment Conservation Journal, 9(3), 11–13.

    Google Scholar 

  • Czaja, A. T. (1961). Die wirkung von verstaubtem kalk und zement auf pflanzen qual. Plant Matter Vegetables, 8, 184–212.

    Google Scholar 

  • Davison, A. W., & Blakemore, J. (1976). Effects of air pollutions on plants. In: T. A. Mansfield (Ed.), (p. 209). Cambridge University Press, Cambridge

  • Eller, B. M. (1977). Road dust induced increase of leaf temperature. Environmental Pollution, 13(2), 99–107.

    Article  Google Scholar 

  • Faith, W. L., & Atkisson, A. A. (1972). Air pollution. New York: Wiley-interscience.

    Google Scholar 

  • Farmer, A. M. (1993). The effects of dust on vegetation—a review. Environmental Pollution, 79(1), 63–75.

    Article  CAS  Google Scholar 

  • Fluckiger W, Braun S, Fluckiger-Keller H (1982). Effect of the interaction between road salt and road dust upon water relations of young trees. In: R Bornkamm, JA Lee, M. R. D. (Eds.), Seaward Urban Ecology (pp. 331–332). Blackwell Scientific Publications, Oxford,

  • Fluckinger, W., Oertli, J. J., & Fluckiger, W. (1979). Relationship between stomatal diffusive resistance and various applied particle sizes on leaf surface. Zeitschrift für Pflanzenphysiologie, 91, 773–775.

    Google Scholar 

  • Geiger, D. R., & Servaites, J. C. (1994). Diurnal regulation of photosynthetic carbon metabolism in C3 plants. Annual Review of Plant Physiology and Plant Molecular Biology, 45, 235–256.

    Article  Google Scholar 

  • Hikosaka, K., & Osone, Y. (2009). A paradox of leaf-trait convergence: why is leaf nitrogen concentration higher in species with higher photosynthetic capacity? Journal of Plant Research, 122(3), 245–251.

    Article  CAS  Google Scholar 

  • Hope, A. S., Fleming, J. B., Stow, D. A., & Aguado, E. (1991). Tussock tundra albedos on the north slope of Alaska: effects of illumination, vegetation composition, and dust deposition. Journal of Applied Meteorology, 30(8), 1200–1206.

    Article  Google Scholar 

  • Keller, J., & Lamprecht, R. (1995). Road dust as an indicator for air pollution transport and deposition: an application of SPOT imagery. Remote Sensing of Environment, 54(12), 1–12.

    Article  Google Scholar 

  • Leith, J. H., Reynolds, J. P., & Rogers, H. H. (1986). Estimation of leaf area of soybeans grown under elevated carbon dioxide levels. Field Crops Research, 13(2), 193–203.

    Google Scholar 

  • Lichtenthaler, H. K., Ač, A., Marek, M., Kalina, J., & Urban, O. (2007). Differences in pigment composition, photosynthetic rates and chlorophyll fluorescence images of sun and shade leaves of four tree species. Plant Physiology and Biochemistry, 45(8), 577–588.

    Article  CAS  Google Scholar 

  • Meusel, I., Neinhuis, C., Markstadter, C., & Barthlott, W. (1999). Ultrastructure, chemical composition, and recrystallization of epicuticular waxes: transversely ridged rodlets. Canadian Journal of Botany, 77(5), 706–720.

    Google Scholar 

  • Meziane, D., & Shipley, B. (1999). Interacting determinants of specific leaf area in 22 herbaceous species: effects of irradiance and nutrient availability. Plant, Cell & Environment, 22(5), 447–459.

    Article  Google Scholar 

  • Niinemets, U., & Kull, K. (2003). Leaf structure vs. nutrient relationships vary with soil conditions in temperate shrubs and trees. Acta Oecologica, 24(4), 209–219.

    Article  Google Scholar 

  • Niinemets, Ü., Diaz-Espejo, A., Flexas, J., Galmes, J., & Warren, C. R. (2009). Role of mesophyll diffusion conductance in constraining potential photosynthetic productivity in the field. Journal of Experimental Botany, 60(8), 2249–2270.

    Article  CAS  Google Scholar 

  • Nowak, D. J. (1994). Air pollution removal by Chicago’s urban forest. In: E. G. McPherson, D. J. Nowak, R. A. Rowntree (Eds.), Chicago’s urban forest ecosystem: Results of the Chicago urban forest climate project (pp. 63–81). USDA Forest Service General Technical Report NE-186.

  • Pal, A., Kulshreshtha, K., Ahmad, K. J., & Behl, H. M. (2002). Do leaf surface characters play a role in plant resistance to auto exhaust pollution. Flora, 197(1), 47–55.

    Article  Google Scholar 

  • Pandey, J., & Agrawal, M. (1992). Ozone concentration variabilities in a seasonally dry tropical climate. Environment International, 18(5), 515–520.

    Article  CAS  Google Scholar 

  • Pandey, J., & Pandey, U. (1994). Evaluation of air pollution phytotoxicity in a seasonally dry tropical urban environment. Environmental Monitoring and Assessment, 33(3), 195–213.

    Article  CAS  Google Scholar 

  • Pandey, J., Agrawal, M., Khanam, N., Narayan, D., & Rao, D. N. (1992). Air pollutant concentrations in Varanasi, India. Atmospheric Envrionment, 26B(1), 91–98.

    CAS  Google Scholar 

  • Prusty, B. A. K., Mishra, P. C., & Azeez, P. A. (2005). Dust accumulation and leaf pigment content in vegetation near the national highway at Sambalpur, Orissa, India. Ecotoxicology and Environmental Safety, 60(2), 228–235.

    Article  CAS  Google Scholar 

  • Rai, A., Kulshreshtha, K., Srivastava, P. K., & Mohanty, C. S. (2010). Leaf surface structure alterations due to particulate pollution in some common plants. Environmentalist, 30(1), 18–23.

    Article  Google Scholar 

  • Saura-Mas, S., & Lloret, F. (2007). Leaf and shoot water content and leaf dry matter content of Mediterranean woody species with different post-fire regenerative strategies. Annals of Botany, 99(3), 545–554.

    Article  CAS  Google Scholar 

  • Seinfeld, J. H. (1975). Air pollution: physical and chemical properties. McGraw Hill, U. S. A.

  • Singh, R. B. (2000). Impact of stone crusher dust pollution on tomato (Lycopersicum esculantum) in the Sonbhadra District of U.P. Journal of Environmental Pollution, 7(1), 235–239.

    Google Scholar 

  • Singh, S. N., & Rao, D. N. (1981). Certain responses of wheat plants to cement dust pollution. Environmental Pollution, 24(1), 75–81.

    CAS  Google Scholar 

  • Stitt, M. (1990). Fructose-2,6-bisphosphate as a regulatory metabolite in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 41(1), 153–185.

    Article  CAS  Google Scholar 

  • Thompson, J. R., Mueller, P. W., Fluckiger, W., & Rutter, A. J. (1984). The effect of dust on photosynthesis and its significance for roadside plants. Environmental Pollution, 34, 171–190.

    Google Scholar 

  • van Jaarsveld, F. (2008). Characterising and mapping of wind transported sediment associated with opencast gypsum mining. Thesis for the degree of Master of Science, South Africa: University of Stellenbosch.

  • Vardaka, E., Cook, C. M., Lanaras, T., Sgardelis, S. P., & Pantis, J. D. (1995). Effect of dust from a limestone quarry on the photosynthesis of Quercus coccifera, and evergreen sclerophyllous shrub. Bulletin of Environmental Contamination and Toxicology, 54, 414–419.

    Article  CAS  Google Scholar 

  • Weinan, C., Fryrear, D. W., & Gillette, D. A. (1998). Sedimentary characteristics of drifting sediments above eroding loessal sandy loam soil as affected by mechanical disturbance. Journal of Arid Environment, 39(3), 421–440.

    Article  Google Scholar 

  • Williams, L. E. (1987). Growth of “Thompson Seedless” grapevines: I. Leaf area development and dry weight distribution. Journal of the American Society for Horticultural Science, 112(2), 325–330.

    Google Scholar 

  • Wright, I. J., Reich, P. B., & Westoby, M. (2001). Strategy-shifts in leaf physiology, structure and nutrient content between species of high and low rainfall, and high and low nutrient habitats. Functional Ecology, 15(4), 423–434.

    Article  Google Scholar 

  • Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J. H. C., Diemer, M., Flexas, J., Garnier, E., Groom, P. K., Gulias, J., Hikosaka, K., Lamont, B. B., Lee, T., Lee, W., Lusk, C., Midgley, J. J., Navas, M.-L., Niinemets, U., Oleksyn, J., Osada, N., Poorter, H., Poot, P., Prior, L., Pyankov, V. I., Roumet, C., Thomas, S. C., Tjoelker, M. G., Veneklaas, E. J., & Villar, R. (2004). The worldwide leaf economics spectrum. Nature, 428, 821–827.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors thank the Ministry of Environment and Forests, Government of India for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hema Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaturvedi, R.K., Prasad, S., Rana, S. et al. Effect of dust load on the leaf attributes of the tree species growing along the roadside. Environ Monit Assess 185, 383–391 (2013). https://doi.org/10.1007/s10661-012-2560-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-2560-x

Keywords

Navigation