Skip to main content

Ionic liquid-based dispersive liquid–liquid microextraction for the determination of formaldehyde in wastewaters and detergents

Abstract

Spectrophotometry in combination with ionic liquid-based dispersive liquid–liquid microextraction (DLLME) was applied for the extraction and determination of formaldehyde in real samples. The method is based on the reaction of formaldehyde with methyl acetoacetate in the presence of ammonia. The variation in the absorbance of the reaction product was measured at 375 nm. An appropriate mixture of ethanol (disperser solvent) and ionic liquid, 1-hexyl-3-methylimidazoliumhexafluoro-phosphate [C6MIM][PF6] (extraction solvent) was rapidly injected into a water sample containing formaldehyde. After extraction, sedimented phase was analyzed by spectrophotometry. Under the optimum conditions, the calibration graph was linear in the range of 0.1–20 ng mL−1 with the detection limit of 0.02 ng mL−1 and limit of quantification of 0.08 ng mL−1 for formaldehyde. The relative standard deviation (RSD%, n = 5) for the extraction and determination of 0.8 ng mL−1 of formaldehyde in the aqueous samples was 2.5%. The results showed that DLLME is a very simple, rapid, sensitive, and efficient analytical method for the determination of trace amounts of formaldehyde in wastewaters and detergents, and suitable results were obtained.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Gámiz-Gracia, L., & Luque de Castro, M. D. (1999). Determination of formaldehyde in liquid, solid and semisolid pharmaceuticals and cosmetics by flow injection–pervaporation. Analyst, 124, 1119–1121.

    Article  Google Scholar 

  • García-López, M., Rodríguez, I., & Cela, R. (2007). Development of a dispersive liquid–liquid microextraction method for organophosphorus flame retardants and plasticizers determination in water samples. Journal of Chromatography. A, 1166, 9–15.

    Article  Google Scholar 

  • Hopkins, J. R., Still, T., Al-Haider, S., Fisher, I. R., Lewis, A. C., & Seakins, P. W. (2003). A simplified apparatus for ambient formaldehyde detection via GC-pHID. Atmospheric Environment, 37, 2557–2565.

    Article  CAS  Google Scholar 

  • Horstkotte, B., Werner, E., Wiedemeier, S., Elsholz, O., Cerdà, V., & Luttmann, R. (2006). At-line determination of formaldehyde in bioprocesses by sequential injection analysis. Analytica Chimica Acta, 559, 248–256.

    Article  CAS  Google Scholar 

  • Jiang, H., Qin, Y., & Hu, B. (2008). Dispersive liquid phase microextraction (DLPME) combined with graphite furnace atomic absorption spectrometry (GFAAS) for determination of trace Co and Ni in environmental water and rice samples. Talanta, 74, 1160–1165.

    Article  CAS  Google Scholar 

  • Kawamura, K., Kerman, K., Fujihara, M., Nagatani, N., Hashiba, T., & Tamiya, E. (2005). Development of a novel hand-held formaldehyde gas sensor for the rapid detection of sick building syndrome. Sensors and Actuators B: Chemical, 105, 495–501.

    Article  Google Scholar 

  • Kiba, N., Sun, L. M., Yokose, S., Kazue, M. T., & Suzuki, T. T. (1999). Determination of nano-molar levels of formaldehyde in drinking water using flow-injection system with immobilized formaldehyde dehydrogenate after off-line solid-phase extraction. Analytica Chimica Acta, 378, 169–175.

    Article  CAS  Google Scholar 

  • Li, Q., Oshima, M., & Motomizu, S. (2007). Flow-injection spectrofluorometric determination of trace amounts of formaldehyde in water after derivatization with acetoacetanilide. Talanta, 72, 1675–1680.

    Article  CAS  Google Scholar 

  • Li, Z., Ma, H., Lu, H., & Tao, G. (2008). Determination of formaldehyde in foodstuffs by flow injection spectrophotometry using phloroglucinol as chromogenic agent. Talanta, 74, 788–792.

    Article  CAS  Google Scholar 

  • Li, Q., Sritharathikhum, P., Oshima, M., & Motomizu, S. (2008). Development of novel detection reagent for simple and sensitive determination of trace amounts of formaldehyde and its application to flow injection spectrophotometric analysis. Analytica Chimica Acta, 612, 165–172.

    Article  CAS  Google Scholar 

  • Liang, P., Xu, J., & Li, Q. (2008). Application of dispersive liquid–liquid microextraction and high-performance liquid chromatography for the determination of three phthalate esters in water samples. Analytica Chimica Acta, 609, 53–58.

    Article  CAS  Google Scholar 

  • Nagaraju, D., & Huang, S. D. (2007). Determination of triazine herbicides in aqueous samples by dispersive liquid–liquid microextraction with gas chromatography–ion trap mass spectrometry. Journal of Chromatography. A, 1161, 89–97.

    Article  CAS  Google Scholar 

  • Nash, T. (1953). The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochemical Journal, 55, 416–421.

    CAS  Google Scholar 

  • Pandey, S. (2006). Analytical applications of room-temperature ionic liquids: a review of recent efforts. Analytica Chimica Acta, 556, 38–45.

    Article  CAS  Google Scholar 

  • Pierotti, D. (1990). Analysis of trace oxygenated hydrocarbons in the environment. Journal of Atmospheric Chemistry, 10, 373–382.

    Article  CAS  Google Scholar 

  • Priha, E. (1995). Are textile formaldehyde regulations reasonable? Experiences from the Finnish textile and clothing industries. Regulatory Toxicology and Pharmacology, 22, 243–249.

    Article  CAS  Google Scholar 

  • Rezaee, M., Assadi, Y., Milani Hosseini, M. R., Aghaee, E., Ahmadi, F., & Berijani, S. (2006). Determination of organic compounds in water using dispersive liquid–liquid microextraction. Journal of Chromatography. A, 1116, 1–9.

    Article  CAS  Google Scholar 

  • Rezaee, M., Yamini, Y., Shariati, Sh, Esrafili, A., & Shamsipur, M. (2009). Dispersive liquid–liquid microextraction combined with high-performance liquid chromatography–UV detection as a very simple, rapid and sensitive method for the determination of bisphenol A in water samples. Journal of Chromatography. A, 1216, 1511–1514.

    Article  CAS  Google Scholar 

  • Rivero, R. T., & Topiwala, V. (2004). Quantitative determination of formaldehyde in cosmetics using a combined solid-phase microextraction–isotope dilution mass spectrometry method. Journal of Chromatography. A, 1029, 217–222.

    Article  CAS  Google Scholar 

  • Sáenz, M., Alvarado, J., Pena-Pereira, F., Senra-Ferreiro, S., Lavilla, I., & Bendicho, C. (2011). Liquid-phase microextraction with in-drop derivatization combined with microvolume fluorospectrometry for free and hydrolyzed formaldehyde determination in textile samples. Analytica Chimica Acta, 687, 50–55.

    Article  Google Scholar 

  • Salvador, A., & Chisvert, A. (Eds.). (2007). Analysis of cosmetic products. Amsterdam: Elsevier.

    Google Scholar 

  • Shamsipur, M., & Ramezani, M. (2008). Selective determination of ultra trace amounts of gold by graphite furnace atomic absorption spectrometry after dispersive liquid–liquid microextraction. Talanta, 75, 294–300.

    Article  CAS  Google Scholar 

  • Shariati, Sh, Yamini, Y., & Rezaee, M. (2011). Dispersive liquid–liquid microextraction for the preconcentration and determination of some organic sulfur compounds in aqueous samples. Monatshefte für Chemie, 142, 555–560.

    Article  CAS  Google Scholar 

  • Toda, K., Yoshioka, K. I., Mori, K., & Hirata, S. (2005). Portable system for near-real time measurement of gaseous formaldehyde by means of parallel scrubber stopped-flow absorptiometry. Analytica Chimica Acta, 531, 41–49.

    Article  CAS  Google Scholar 

  • Zhang, H. F., & Shi, Y. P. (2010). Temperature-assisted ionic liquid dispersive liquid–liquid microextraction combined with high performance liquid chromatography for the determination of anthraquinones in Radix et Rhizoma Rhei samples. Talanta, 82, 1010–1016.

    Article  CAS  Google Scholar 

  • Zhang, D., Zhang, J., Li, M., Li, W., Aimaiti, G., Tuersun, G., Ye, J., & Chu, Q. (2011). A novel miniaturised electrophoretic method for determining formaldehyde and acetaldehyde in food using 2-thiobarbituric acid derivatisation. Food Chemistry, 129, 206–212.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We gratefully acknowledge the post-graduate office of Guilan University for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Arvand.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Arvand, M., Bozorgzadeh, E., Shariati, S. et al. Ionic liquid-based dispersive liquid–liquid microextraction for the determination of formaldehyde in wastewaters and detergents. Environ Monit Assess 184, 7597–7605 (2012). https://doi.org/10.1007/s10661-012-2521-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-2521-4

Keywords

  • Formaldehyde
  • Ionic liquid
  • Dispersive liquid–liquid microextraction
  • Wastewaters
  • Spectrophotometry