Skip to main content
Log in

Fractions and background concentrations of potentially toxic elements in Hungarian surface soils

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This work established background concentrations for the pseudo total (HNO3 + H2O2-soluble), mobilisable (NH4-acetate + EDTA-soluble) and mobile (1 M NH4NO3-soluble) element fractions of Hungarian surface soils that can be used as reference values for the soil quality standards. The 193 soils investigated were taken from the Hungarian Soil Information and Monitoring System. The background values for Al, As, B, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sr and Zn were given as a range covering 95% of the variance of the representative samples. The differences between observed element concentrations and the calculated background values indicated anthropogenic or pedogenic impact in each fraction. The comparison of the calculated background values with the Hungarian quality standards and the contamination limit values of other countries showed that the limit values of a certain region or country are not suitable for other areas. Generally, Mn and Al had the highest, while Cd had the lowest concentration in each fraction. Cr and Al were the least and Sr was the most mobile element. The principal component analysis indicated different geochemical and physico-chemical behaviour of the elements in the fractions; the pseudo total fraction was influenced more by the geological behaviour, while mobilisable and mobile fraction explained a much higher proportion of the total variance of soil physico-chemical properties than soil geochemical properties. The Cd–Ni and Co–Mn element pairs were always in the same principal component in each fractions indicating similar geogenic origin and showing that their solubility changes are similar in function of soil properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • 6/2009. (IV. 14.) (2009). KvVM-EüM-FVM common order about the standard limits and measurement of contamination for the protection of underground water and geological medium. (In Hungarian) Magyar Közlöny, 51, 14398–14414.

  • Acosta, J. A., Faz, A., Martínez-Martínez, S., & Arocena, J. M. (2011). Enrichment of metals in soils subjected to different land uses in a typical Mediterranean environment (Murcia City, southeast Spain). Applied Geochemistry, 26, 405–414.

    Article  CAS  Google Scholar 

  • Alloway, B. J. (1995). The origins of heavy metals in soils. In B. J. Alloway (Ed.), Heavy metals in soils. London: Chapman & Hall.

    Chapter  Google Scholar 

  • Antoniadis, V., Robinson, J. S., & Alloway, B. J. (2008). Effects of short-term pH fluctuations on cadmium, nickel, lead, and zinc availability to ryegrass in a sewage sludge-amended field. Chemosphere, 71, 759–764.

    Article  CAS  Google Scholar 

  • Aten, C. F., & Gupta, S. K. (1996). On heavy metals in soil; rationalization of extractions by dilute salt solutions, comparison of the extracted concentrations with uptake by ryegrass and lettuce, and the possible influence of pyrophosphate on plant uptake. Science of the Total Environment, 178, 45–53.

    Article  CAS  Google Scholar 

  • Bálint M. (2009). Changes in the contamination limit values (B) and in the assay requirements. (In Hugarian) Presentation in the Conference on Actual Questions about Environmental Clean-up Strategies. Budapest, 2009. 04. 22.

  • Borůvka, L., Vacek, O., & Jehlička, J. (2005). Principal component analysis as a tool to indicate the origin of potentially toxic elements in soils. Geoderma, 128, 289–300.

    Article  Google Scholar 

  • CEC (Commission of the European Communities). (1986). Council Directive (86/278/EEC) of 12 June on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture. Official Journal of the European Communities, L 181, 6–12.

  • Cortizas, A. M., Gayoso, E. G.-R., Munoz, J. C. N., Pombal, X. P., Buurman, P., Terribile, F. (2003). Distribution of some selected major and trace elements in four Italian soils developed from the deposits of the Gauro and Vico volcanoes. Geoderma, 117, 215–224.

  • Díez, M., Simón, M., Martín, F., Dorronsoro, C., García, I., & Van Gestel, C. A. (2009). Ambient trace element background concentrations in soils and their use in risk assessment. Science of the Total Environment, 407, 4622–4632.

    Article  Google Scholar 

  • DIN 19730. (1995). Bodenbeschaffenheit, Extraktion von Spurenelementen mit Ammoniumnitratlösung. Deutsches Institut für Normierung. Berlin, Beuth Verlag.

  • Du Laing, G., Rinklebe, J., Vandecasteele, B., Meers, E., & Tack, F. M. G. (2009). Heavy metal mobility and availability in estuarine and riverine floodplain soils and sediments: A review. Science of the Total Environment, 407, 3972–3985.

    Article  Google Scholar 

  • Dudka, S. (1992). Factor analysis of total element concentrations in surface soils of Poland. The Science of the Total Environment, 121, 39–52.

    Article  CAS  Google Scholar 

  • Fekete, A. (1989). Non-essential (toxic) microelement content of Hungarian soils. Agrokémia és Talajtan, 38, 174–176. In Hungarian.

    CAS  Google Scholar 

  • Fügedi, U., Horváth, I., & Ódor, L. (2006). The geochemical background and the natural environmental impact in near-surface geological formations of Hungary. In G. Szendrei (Ed.), Environmental geochemical state of Hungary (pp. 11–22). Budapest: Innova Print Kft. In Hungarian.

    Google Scholar 

  • Garrett, R. G. (1991).The management, analysis and display of exploration geochemical data. Exploration geochemistry workshop. Ottawa: Geological Survey of Canada; Open File 2390.

  • Gryschko, R., Kuhnle, R., Terytze, K., Breuer, J., & Stahr, K. (2005). Soil extraction of readily soluble heavy metals and As with 1 M NH4NO3-solution. Evaluation of DIN 19730. Journal of Soils and Sediments, 5, 101–106.

    Article  CAS  Google Scholar 

  • Gupta, S. K., Vollmer, M. K., & Krebs, R. (1996). The importance of mobile, mobilisable and pseudo total heavy metal fractions in soil for three-level risk assessment and risk management. Science of the Total Environment, 178, 11–20.

    Article  CAS  Google Scholar 

  • Hall, G. E. M., MacLaurin, A. I., & Garrett, R. G. (1998). Assessment of the 1 M NH4NO3 extraction protocol to identify mobile forms of Cd in soils. Journal of Geochemical Exploration, 64, 153–159.

    Article  CAS  Google Scholar 

  • Hawkes, H. E., & Webb, J. S. (1962). Geochemistry in mineral exploration. New York: Harper.

    Google Scholar 

  • He, Q. B., & Singh, B. R. (1993). Plant availability of cadmium in soils I. Acta Agriculturæ Scandinavica, 43, 134–141.

    CAS  Google Scholar 

  • Kabala, C., & Singh, B. R. (2001). Fractionation and mobility of copper, lead and zinc in soil profiles in the vicinity of a copper smelter. Journal of Environmental Quality, 30, 485–492.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (1992). Trace elements in soils and plants. Boca Raton: CRC Press. 365.

    Google Scholar 

  • Kádár, I. (1995). Contamination of soil-plant-animal-human food chain with chemical elements in Hungary (p. 388). Budapest: MTA TAKI. In Hungarian.

    Google Scholar 

  • Kádár, I. (1998). About the analysis of contaminated soils. Handbook of environmental clean-up 2 (p. 151). Budapest: Környezetvédelmi Minisztérium.

    Google Scholar 

  • Kádár, I. (2007). Assessment of soil pollution from a researcher’s view (In Hungarian). Agrokémia és Talajtan, 56, 391–408.

    Google Scholar 

  • Klassen, R. A. (1998). Geological factors affecting the distribution of trace metals in glacial sediments of central Newfoundland. Environmental Geology, 33, 154–169.

    Article  CAS  Google Scholar 

  • Lakanen, E., & Erviö, R. (1971). A comparison of eight extractants for the determination of plant available micronutrients in soils. Acta Agralia Fennica, 123, 223–232.

    Google Scholar 

  • Mahanta, M. J., & Bhattacharyya, K. G. (2011). Total concentrations, fractionation and mobility of heavy metals in soils of urban area of Guwahati, India. Environmental Monitoring and Assessment, 173, 221–240.

    Article  CAS  Google Scholar 

  • Marth, P. (1990). Comparison of different soil examination methods. Thesis. (In Hungarian) GATE Faculty of Agriculture. Gödöllő; pp. 81.

  • Micó, C., Peris, M., Recatalá, L., & Sánchez, J. (2007). Baseline values for heavy metals in agricultural soils in an European Mediterranean region. Science of the Total Environment, 378, 13–17.

    Article  Google Scholar 

  • Ministry of Housing. (1994). Spatial planning and the environment. Intervention and target values—soil quality standards, The Netherlands.

  • MSZ 21470–50:2006. Environmental testing of soils. Determination of total and soluble toxic element, heavy metal and chromium (VI) content. (In Hungarian) Budapest, Hungarian Standard Association.

  • MSZ-08-0205:1978 Determination of physical and hydrophysical properties of soils. (In Hungarian) Budapest, Hungarian Standard Association.

  • MSZ-08-0206/2:1978 Evaluation of some chemical properties of the soil. Laboratory tests [pH value, phenolphtaleine alkalinity expressed in soda, all water soluble salts, hydrolite (y1-value) and exchanging acidity (y2-value)]. (In Hungarian) Budapest, Hungarian Standard Association.

  • MSZ-08-0452:1980 Use of high-capacity analyser systems for soils analyses. Quantitative determination of the organic carbon content of the soil on Contiflo analyzer system. (In Hungarian) Budapest, Hungarian Standard Association.

  • Mühlbachová, G., Simon, T., & Pechová, M. (2005). The availability of Cd, Pb and Zn and their relationships with soil pH and microbial biomass in soils amended by natural clinoptilolite. Plant, Soil and Environment, 51, 26–33.

    Google Scholar 

  • Patócs, I. (1990).Occurance of heavy metals and toxic elements in soils of Hungary. In I. Pais (ed.), Proc. 4th Intern. Symp. on Trace Elements. (pp. 19–30) Budapest, KÉE.

  • Pérez-Sirvent, C., Martínez-Sánchez, M. J., García-Lorenzo, M. L., Molina, J., & Tudela, M. L. (2009). Geochemical background levels of zinc, cadmium and mercury in anthropically influenced soils located in a semi-arid zone (SE, Spain). Geoderma, 148, 307–317.

    Article  Google Scholar 

  • Prakongkep, N., Suddhiprakarn, A., Kheoruenromne, I., Smirk, M., & Gilkes, R. J. (2008). The geochemistry of Thai paddy soils. Geoderma, 144, 310–324.

    Article  CAS  Google Scholar 

  • Prueβ, A. (1997). Action values mobile (NH4NO3-extractable) trace elements in soils based on the German national standard DIN 19730. In R. Prost (Ed.), Contaminated Soils, 3rd International Conference on the Biogeochemistry of Trace Elements, Paris (pp. 415–423) Dordrecht, Kluwer Academic Publishers.

    Google Scholar 

  • Pueyo, M., Lopez-Sanchez, J. F., & Rauret, G. (2004). Assessment of CaCl2, NaNO3 and NH4NO3 extraction procedures for the study of Cd, Cu, Pb and Zn extractability in contaminated soils. Analytica Chimica Acta, 504, 217–226.

    Article  CAS  Google Scholar 

  • Reimann, C., & Garrett, R. G. (2005). Geochemical background—concept and reality. Science of the Total Environment, 350, 12–27.

    Article  CAS  Google Scholar 

  • Rékási, M., & Filep, T. (2010). Relations between soil properties and the 1 M NH4NO3 soluble mobile element fraction. Agrokémia és Talajtan, 59, 109–116.

    Article  Google Scholar 

  • Rieuwerts, J., Thornton, I., Farago, M., & Ashmore, M. (1998). Quantifying the influence of soil properties on the solubility of metals by predictive modelling of secondary data. Chem. Speciation Bioavailability, 10, 83–94.

    Article  CAS  Google Scholar 

  • Salminen, R., & Tarvainen, T. (1997). The problem of defining geochemical baselines. Exploration, 60, 91–98.

    Article  CAS  Google Scholar 

  • Sillanpää, M. (1982). Micronutrients and the nutrient status of soils: A global study. FAO Soils Bull. 48. Rome, FAO.

  • Sillanpää, M., Jansson, H. (1992). Status of cadmium, lead, cobalt and selenium in soils and plants of thirty countries. FAO Soils Bull. 65. Rome, FAO.

  • Song, J., Zhao, F. I., Luo, Y. M., McGrath, S. P., & Zhang, H. (2004). Copper uptake by Elsholtzia splendens and Silene vulgaris and assessment of copper phytoavailability in contaminated soils. Environmental Pollution, 128, 307–315.

    Article  CAS  Google Scholar 

  • Symeonides, C., & McRae, S. G. (1977). The assessment of plant-available cadmium in soils. Journal of Environmental Quality, 6, 120–123.

    Article  CAS  Google Scholar 

  • Tume, P., Bech, J., Longan, L., Tume, L., Reverter, F., & Sepulveda, B. (2006). Trace elements in natural surface soils in Sant Climent (Catalonia, Spain). Ecological Engineering, 27, 145–152.

    Article  Google Scholar 

  • UM [Umweltministerium Baden-Württemberg Hrsg.]. (1993). Dritte Verwaltungsvorschrift des Umweltministeriums zum Bodenschutzgesetz über die Ermittlung und Einstufung von Gehalten anorganischer Schadstoffe im Boden (VwV Anorganische Schadstoffe).-Gemeinsames Amtsblatt des Landes Baden-Württemberg (GABL). Stuttgart, 30, 1029–1036.

    Google Scholar 

  • Várallyay, G. (1994). Soil data-base for long-term field experiments and sustainable land use. Agrokémia és Talajtan, 43, 269–290.

    Google Scholar 

  • Várallyay, Gy., Buzásné Hartyányi, M., Marth, P., Molnár, E., Podmaniczky, G., Szabados, I., Szabóné Kele, G. (1995). TIM-Hungarian Soil Information and Monitoring System. Methodology. (In Hunagrian) Budapest, FVM, AKAPRINT.

  • Várallyay, Gy., Szabóné Kele, G., Berényi Üveges, J., Marth, P., Karkalik, A., Thury, I. (2009).The status of Hungarian soils—based on the Hungarian Soil Information and Monitoring System (In Hungarian) Budapest, FVM.

  • Vermes, L. (2007). Some correlations between land use, soil quality and soil pollution from the aspect of environmental regulation (In Hungarian). Agrokémia és Talajtan, 56, 379–390.

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Hungarian Research Fund (OTKA K 68665) and NKTH (HR-22/2008). The authors would like to thank Péter Marth (CAO Plant and Soil Protection Services) for supplying the soil samples and dataset and the Department of Environmental Informatics of RISSAC CAR for valuable assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Márk Rékási.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rékási, M., Filep, T. Fractions and background concentrations of potentially toxic elements in Hungarian surface soils. Environ Monit Assess 184, 7461–7471 (2012). https://doi.org/10.1007/s10661-011-2513-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-2513-9

Keywords

Navigation