Environmental Monitoring and Assessment

, Volume 184, Issue 12, pp 7365–7372 | Cite as

Influence of mercury from fly ash on cattle reared nearby thermal power plant

  • Vikas Eknath Mahajan
  • Raju Ravindra Yadav
  • Narayan Purushottam Dakshinkar
  • Vinod Madanlal Dhoot
  • Gautam Ramkrishna Bhojane
  • Madhura Kiran Naik
  • Preeti Shrivastava
  • Pravin Krishnarao Naoghare
  • Kannan Krishnamurthi
Article

Abstract

Cattle grazing nearby coal-fired power stations are exposed to fly ash. The present investigation aims to assess the environmental and health impacts of fly ash containing mercury emitted from thermal power plant. The health effect of fly ash were studied using 20 lactating cattle reared within a 5-km radius of s thermal power plant for the possible effect of fly ash such as the alterations in hematological and biochemical parameters of blood, milk, and urine. Results indicated that the hemoglobin levels (6.65 ± 0.40 g/dl) were significantly reduced in all the exposed animals. Biochemical parameters viz., blood urea nitrogen (27.35 ± 1.19 mg/dl), serum glutamate oxaloacetate transaminase (43.39 ± 3.08 IU/l), albumin, and creatinine were found to be increased, whereas serum glutamate pyruvic transaminase (29.26 ± 2.02) and Ca2+ were observed to be statistically insignificant in exposed animals. Mercury concentrations estimated in the blood, milk, and urine of exposed (n = 20) and control (n = 20) animals were 7.41 ± 0.86, 4.75 ± 0.57, 2.08 ± 0.18, and 1.05 ± 0.07, 0.54 ± 0.03, 0.20 ± 0.02 μg/kg, respectively. The significant increase (P < 0.01) in the levels of mercury in blood, milk, and urine of exposed animals in comparison to control indicated that the alterations of biochemical parameters in exposed cattle could be due to their long term exposure to fly ash mercury which may have direct or indirect impact on human populations via food chain.

Keywords

Cattle Fly ash Mercury Thermal power plant 

References

  1. Alonso, M. L., Benedito, J. L., Miranda, M., Castillo, C., Hernandez, J., & Shore, R. F. (2003a). Mercury concentration in cattle from NW Spain. The Science of the Total Environment, 302(1–3), 93–100.Google Scholar
  2. Alonso, M. L., Benedito, J. L., Miranda, M., Fernandez, J. A., Castillo, C., Hernandez, J., & Shore, R. F. (2003b). Large scale spatial variation in mercury concentration in cattle in NW Spain. Environmental Pollution, 25, 173–181.CrossRefGoogle Scholar
  3. Bafana, A., Krishnamurthi, K., Patil, M., & Chakrabarti, T. (2009). Heavy metal resistance in Arthrobacter ramosus strain G2 isolated from mercuric salt-contaminated soil. Journal of Hazardous Materials, 177, 481–486.CrossRefGoogle Scholar
  4. Bahga, C. S., Sikka, S. S., & Saijpal, S. (2009). Effect of seasonal stress on growth rate and serum enzyme levels in young crossbred calves. Indian Journal of Animal Research, 43, 288–290.Google Scholar
  5. Bando, I., Reus, M. I. S., Andres, D., & Cascales, M. (2005). Endogenous antioxidant defence system in rat liver following mercury chloride oral intoxication. Journal of biochemistry and molecular toxicology, 19, 154–161.CrossRefGoogle Scholar
  6. Bauer, P. J. (1981). Affinity and stoichiometry of calcium binding by arsenazo III. Analytical Biochemistry, 1,110(1), 61–72.CrossRefGoogle Scholar
  7. Bonacker, D., Stoiber, T., Wang, M., Böhm Konrad, J., Prots, I., Unger, E., Their, R., Hermann, B., Bolt Hermann, M., & Degen Gisela, H. (2004). Genotoxicity of inorganic mercury salts based on disturbed microtubule function. Archive of Toxicology, 78, 575–583.CrossRefGoogle Scholar
  8. Chakraborty, R., & Mukherjee, A. (2011). Technical note: Vetiver can grow on coal fly ash without DNA damage. International Journal of Phytoremediation, 3, 206–214.Google Scholar
  9. Chauhan, S. S., Chaudhary, V. K., & Satyanarayan, M. V. K. (1987). Cytotoxicity of inhaled coal fly ash in rats. Environmental Research, 43, 1–12.CrossRefGoogle Scholar
  10. Devi, S. S., Vinayagamoorthy, N., Agrawal, M., Biswas, A., Biswas, R., Naoghare, P., Kumbhakar, S., Krishnamurthi, K., Hengstler, J. G., Hermes, M., & Chakrabarti, T. (2008). Distribution of detoxifying genes polymorphism in Maharastrian population of central India. Chemosphere, 70, 1835–1839.CrossRefGoogle Scholar
  11. Dogra, R. K. S., Shanker, R., Saxena, A. K., Khanna, S., Srivastava, S. N., Shukla, L. J., & Zaidi, S. H. (1984). Air pollution: Significance of pulmonary dust deposits in bovine species. Environmental Pollution Series A, Ecological and Biological, 36, 109–120.CrossRefGoogle Scholar
  12. Froetscher, R. K., Tataruch, F., Hauser, S., Leschnik, M., Url, A., & Baumgartner, W. (2007). Toxic effects seen in a herd of beef cattle following exposure to ash residue contaminated by lead and mercury. The Veterinary Journal, 174, 99–105.CrossRefGoogle Scholar
  13. Han, W. K., & Bonventre, J. V. (2004). Biologic markers for the early detection of acute kidney injury. Current Opinion in Critical Care, 10, 476–482.CrossRefGoogle Scholar
  14. Jain, N. C. (1986). Schalm’s Veterinary Hematology (4th ed.). 600. Washington square, Philadelphia, USA: Lea and Febiger.Google Scholar
  15. Johansen, P., Mulvad, G., Pedersen, H. S., Hansen, J. C., & Riget, F. (2007). Human accumulation of mercury in Greenland. The Science of the Total Environment, 377, 173–178.CrossRefGoogle Scholar
  16. Khapekar, R. R., & Nandkar, P. B. (2007). Water quality index (WQI) of Koradi Thermal Power Station. Environmental Ecology, 25, 690–695.Google Scholar
  17. Kunzli, N. (2011). Commentary: Abating climate change and lung cancer. International Journal of Epidemiology. doi:10.1093/ije/dyr,037,1-2.
  18. Lecavalier, P. R., Chu, I., Villeneuve, D., & Valli, V. E. (1994). Combined effects of mercury and hexachlorobenzene in the rat. Journal of Environmental Science and Health Part B, 29(5), 951–961.CrossRefGoogle Scholar
  19. Mani, U., Prasad, A. K., Kumar, V. S., Kewal, L., Kanojia, R. K., Chaudhari, B. P., & Murthy, R. C. (2007). Effect of fly ash inhalation on biochemical and histomorphological changes in rat liver. Ecotoxicology and Environmental Safety, 68, 126–133.CrossRefGoogle Scholar
  20. Massanyi, P., Lukac, N., Slivkova, J., Kovacik, J., Massanyi, P., Lukac, N., Slivkova, J., Kovacik, J., Makarevich, A. V., Chrenek, P., Toman, R., Forgacs, Z., Somosy, Z., Stawarz, R., & Formicki, G. (2007). Mercury-induced alterations in rat kidneys and testes in vivo. Journal of Environmental Science and Health, Part A, 42, 865–870.Google Scholar
  21. Mazhaiskii, Y. A., Zakharova, O. A., Evtyukhin, V. F., & Tobratov, S. A. (2000). Pollution in the zone around Ryazan power station. Chemical and Petroleum Engineering, 36, 607–610.CrossRefGoogle Scholar
  22. Menon, J. S., & Mahajan, S. V. (2010). Site-wise mercury levels in Ulhas River Estuary and Thane Creek near Mumbai, India and its relation to water parameters. Our Nature, 8, 170–179.Google Scholar
  23. Moreira-Rodrigues, M., Henriques-Coelho, T., Moura, C., Vasques Novoa, F., Sampaio-Maia, B., Pestana, M., & Leite-Moreira, F. A. (2010). Cardiac dysfunction in HgCl2-induced nephrotic syndrome. Experimental Biology and Medicine, 235, 392–400. doi:10.1258/ebm.2009.009147.CrossRefGoogle Scholar
  24. Oskarsson, A., Hallen, I. P., Sundberg, J., & Grawe, K. P. (1998). Risk assessment in relation to neonatal meat exposure. Analyst, 123(1), 19–23.CrossRefGoogle Scholar
  25. Pandey, V. C., Abhilash, P. C., & Singh, N. (2009). The Indian perspective of utilizing fly ash in phytoremediation, phytomanagement and biomass production. Journal of Environmental Management, 90, 2943–2958.CrossRefGoogle Scholar
  26. Patnaik, B. B., Roy, A., Agarwal, S., & Bhattacharya, S. (2010). Induction of oxidative stress by non-lethal dose of mercury in rat liver: Possible relationships between apoptosis and necrosis. Journal of Environmental Biology, 31, 413–416.Google Scholar
  27. Persijn, J. P., & Vanderslik, W. (1976). A new method for the determination of glutamyl transferase in serum. Journal of Clinical Chemistry and Clinical Biochemistry, 141, 421–427.Google Scholar
  28. Ramanan, R., Krishnamurthi, K., Deshkar, A., Yadav, R., & Chakrabarti, T. (2010). Enhanced algal CO2 sequestration through calcite deposition by Chlorella sp. and Spirulina platensis in a mini-raceway pond. Bioresource Technology, 101, 2616–2622.CrossRefGoogle Scholar
  29. Robinson, M., & Hesketh, A. (1976). Effect of mercuric chloride on the structure and function of the kidney of sheep. Journal of Comparative Pathology, 86, 307–318.CrossRefGoogle Scholar
  30. Sepulveda, A., Schluep, M., Renaud, F. G., Streicher, M., Kuehr, R., Hagelüken, C., & Gerecke, A. C. (2010). A review of the environmental fate and effects of hazardous substances released from electrical and electronic equipments during recycling: Examples from China and India. Environmental Impact Assessment Review, 30, 28–41.CrossRefGoogle Scholar
  31. Sharma, S. K., & Kalra, N. (2006). Effect of fly ash incorporation on soil properties and productivities of crops: A review. Journal of Science and Industrial Research, 65, 383–390.Google Scholar
  32. Sharma, M. C., Kumar, M., & Sharma R. D. (2009). Textbook of Clinical Veterinary Medicine. Edition1, ICAR, New Delhi.Google Scholar
  33. Sieber, M., Hoffmann, D., Adler, M., Vaidya, V. S., Clement, M., Bonventre, J. V., Zidek, N., Rached, E., Amberg, A., Callanan, J. J., Dekant, W., & Mally, A. (2009). Comparative analysis of novel noninvasive renal biomarkers and metabonomic changes in a rat model of gentamicin nephrotoxicity. Toxicological Sciences, 109(2), 336–349.CrossRefGoogle Scholar
  34. Smith, K. R., Veranth, J. M., Kodavanti, U. P., Aust, A. E., Kent, E., & Pinkerto, K. E. (2006). Acute pulmonary and systemic effects of inhaled coal fly ash in rats: Comparison to ambient environmental particles. Toxicological Sciences, 93(2), 390–399.CrossRefGoogle Scholar
  35. Stoiber, T., Bonacker, D., Böhm, K. J., Bolt Hermann, M., Their, R., Degen Gisela, H., & Unger, E. (2004). Disturbed microtubule function and induction of micronuclei by chelate complexes of mercury(II). Mutation Research, 563, 97–106.CrossRefGoogle Scholar
  36. Swarup, D., & Dwivedi, S. K. (2002). Environmental pollution and effects of lead and fluoride on animal health (1st ed.). New Delhi: ICAR.Google Scholar
  37. Thefeld, W., Hoffmeister, H., Busch, E. W., Koller, P. U., &Vollmar, J. (1974). Referenzwertefuer die Bestimmungen der Transaminasen GOT und GPT sowie der alkalischen Phosphatase im Serum mit optimierten Standardmethoden. Deutsche Medizinische Wochenschrift, 99, 343–351.CrossRefGoogle Scholar
  38. Toro, G., & Ackerman, P. G. (1975). Practical clinical chemistry. Boston: Brown.Google Scholar
  39. US EPA. (1998). Method 7473, Mercury in solids and solutions by thermal decomposition, amalgamation and atomic absorption spectrophotometry. Washington, DC.Google Scholar
  40. Williams, D. F. (1981). Mercury. In Systemic aspects of biocompatibility (pp. 237–247). Boca Raton, Florida: CRP.Google Scholar
  41. Wolf, M. B., & Baynes, J. W. (2007). Cadmium and mercury cause an oxidative stress-induced endothelial dysfunction. BioMetals, 20, 73–81.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Vikas Eknath Mahajan
    • 1
  • Raju Ravindra Yadav
    • 2
  • Narayan Purushottam Dakshinkar
    • 1
  • Vinod Madanlal Dhoot
    • 1
  • Gautam Ramkrishna Bhojane
    • 1
  • Madhura Kiran Naik
    • 2
  • Preeti Shrivastava
    • 2
  • Pravin Krishnarao Naoghare
    • 2
  • Kannan Krishnamurthi
    • 2
  1. 1.Nagpur Veterinary College, Seminary HillsNagpurIndia
  2. 2.Environmental Health Division, National Environmental Engineering Research Institute (NEERI)NagpurIndia

Personalised recommendations