Skip to main content

Advertisement

Log in

The role of metadata and strategies to detect and control temporal data bias in environmental monitoring of soil contamination

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

It is crucial for environmental monitoring to fully control temporal bias, which is the distortion of real data evolution by varying bias through time. Temporal bias cannot be fully controlled by statistics alone but requires appropriate and sufficient metadata, which should be under rigorous and continuous quality assurance and control (QA/QC) to reliably document the degree of consistency of the monitoring system. All presented strategies to detect and control temporal data bias (QA/QC, harmonisation/homogenisation/standardisation, mass balance approach, use of tracers and analogues and control of changing boundary conditions) rely on metadata. The Will Rogers phenomenon, due to subsequent reclassification, is a particular source of temporal data bias introduced to environmental monitoring here. Sources and effects of temporal data bias are illustrated by examples from the Swiss soil monitoring network. The attempt to make a comprehensive compilation and assessment of required metadata for soil contamination monitoring reveals that most metadata are still far from being reliable. This leads to the conclusion that progress in environmental monitoring means further development of the concept of environmental metadata for the sake of temporal data bias control as a prerequisite for reliable interpretations and decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Albertsen, P. C., Hanley, J. A., Barrows, G. H., Penson, D. F., Kowalezyk, P. D. H., Sanders, M., & Fine, J. (2005). Prostate cancer and the Will Rogers Phenomenon. Journal of the National Cancer Institute, 97, 1248–1253.

    Article  Google Scholar 

  • AMC (2008). Measurement uncertainty arising from sampling: the new Eurachem Guide. AMC technical briefs, 31, 2 pp. Analytical Methods Committee (AMC) of the Royal Society of Chemistry.

  • Archaux, F., Boulanger, V., Camaret, S., Corcket, E., Dupouey, J.-L., Forgeard, F., Heuzé, P., Lebret-Gallet, M., Marell, A., Payet, K., Ulrich, E., Behr, P., Bourjot, L., Brêthes, A., Chevalier, R., Dobremez, J. -F., Dumas, Y., Dumé, G., Forêt, M., Kieffer, C., Mirlyaz, W., Picard, J. -F., Richard, F., Savoie, J. -M., Seytre, L., Timbal, J., Touffet, J., & Triesch, S. (2009). RENECOFOR–Dix ans de suivi de la végétation forestière: avancées méthodologiques et évolution temporelle de la flore (1994/95–2005). Office National des Forêts, Direction Technique et Commerciale Bois, F-77300 Fontainebleau.143 p. (Abstract: Ten-year monitoring of forest vegetation: methodological results and temporal changes in flora (1994/95–2005).

  • Auerswald, K., & Schimmack, W. (2000). Element-pool balances in soils containing rock fragments. Catena, 40, 279–290.

    Article  CAS  Google Scholar 

  • Beard, G. R., Scott, W. A., & Adamson, J. K. (1999). The value of consistent methodology in long-term environmental monitoring. Environmental Monitoring and Assessment, 54, 239–258.

    Article  Google Scholar 

  • Begert, M., Schlegel, T., & Kirchhofer, W. (2005). Homogeneous temperature and precipitation series of Switzerland from 1864 to 2000. International Journal of Climatology, 25, 65–80.

    Article  Google Scholar 

  • Bellamy, P. H., Loveland, P. J., Bradley, R. I., Lark, R. M., & Kirk, G. J. D. (2005). Carbon losses from all soils across England and Wales 1978–2003. Nature, 437, 245–248.

    Article  CAS  Google Scholar 

  • Bernard, L., Kanellopoulos, I., Annoni, A., & Smits, P. (2005). The European geoportal—one step towards the establishment of a European spatial data infrastructure. Computers, Environment and Urban Systems, 29, 15–31.

    Google Scholar 

  • Berti, W. R., & Jacobs, L. W. (1998). Distribution of trace elements in soil from repeated sewage sludge applications. Journal of Environmental Quality, 27, 1280–1286.

    Article  CAS  Google Scholar 

  • Bignert, A., Göthberg, A., Jensen, S., Litzén, K., Odsjö, T., Olsson, M., & Reutergardh, L. (1993). The need for adequate biological sampling in ecotoxicological investigations: a retrospective study of twenty years contamination monitoring. The Science of the Total Environment, 128, 121–139.

    Article  CAS  Google Scholar 

  • Bland, J. M., & Altman, D. G. (1994). Regression towards the mean. British Medical Journal, 308, 1499.

    Article  CAS  Google Scholar 

  • Burt, T. P. (1994). Long-term study of the natural environment—perspective science or mindless monitoring? Progress in Physical Geography, 18, 475–496.

    Article  Google Scholar 

  • Chamberlain, P. M., Emmett, B. A., Scott, W. A., Black, H. I. J., Hornung, M., & Frogbrook, Z. L. (2010). No change in topsoil carbon levels of Great Britain, 1978–2007. Biogeosciences Discussions, 7, 2267–2311.

    Article  Google Scholar 

  • Costa, A. C., & Soares, A. (2009). Homogenization of climate data: Review and new perspectives using geostatistics. Mathematical Geosciences, 41, 291–305.

    Article  Google Scholar 

  • Delgado-Rodriguez, M., & Llorca, J. (2004). Bias. Journal of Epidemiological Community Health, 58, 635–641.

    Article  Google Scholar 

  • Desaules, A. (1993). Soil monitoring in Switzerland by the NABO-network: Objectives, experiences and problems. In R. Schulin, A. Desaules, R. Webster, & B. von Steiger (Eds.), Soil monitoring: Early detection and surveying of soil contamination and degradation (pp. 7–24). Basel: Birkhäuser.

    Google Scholar 

  • Desaules, A. (2012). Measurement instability and temporal bias in chemical soil monitoring: sources and control measures. Environmental Monitoring and Assessment, 184, 487–502.

    Google Scholar 

  • Desaules, A., Schwab, P., Keller, A., Ammann, S., Paul, J., & Bachmann, H. J. (2006). Anorganische Schadstoffgehalte in Böden der Schweiz und Veränderungen nach 10 Jahren. Ergebnisse der Nationalen Bodenbeobachtung 1985–1999. Bundesamt für Umwelt, Bern & Agroscope FAL Reckenholz, Zürich. www.nabo.admin.ch > Bibliographie Nr. 138.

  • Desaules, A., Ammann, S., & Schwab, P. (2010). Advances in long-term soil contamination monitoring of Switzerland. Journal of Plant Nutrition and Soil Science, 173, 525–535.

    Article  CAS  Google Scholar 

  • EEA. (2010). The European environment—state and outlook 2010: Synthesis. Copenhagen: European Environment Agency.

    Google Scholar 

  • Ellison, S. L. R., Rosselin, M., & Williams, R. (Eds.) (2000). Quantifying uncertainty in analytical measurement uncertainty arising from sampling: A guide to methods and approaches. Eurachem/CITAC Guide, Eurachem. (2nd ed.) (www.eurachem.org/guides/QUAM2000-1.pdf).

  • Feinstein, A. R., Sosin, D. M., & Wells, D. K. (1985). The Will Rogers phenomenon. Stage migration and new diagnostic techniques as a source of misleading statistics for survival in cancer. The New England Journal of Medicine, 312, 1604–1608.

    Article  CAS  Google Scholar 

  • Fortier, P. J., & Dasari, K. (2009). Examining the role of metadata in testing IED detection systems. ITEA Journal, 30, 421–433.

    Google Scholar 

  • Gadbury, G. L., & Schreuder, H. T. (2003). Cause–effect relationships in analytical surveys: An illustration of statistical issues. Environmental Monitoring and Assessment, 83, 205–227.

    Article  Google Scholar 

  • Greenland, S. (2005). Multiple-bias modelling for analysis of observational data. Journal of the Royal Statistical Society. Series A, 168(2), 267–306.

    Google Scholar 

  • Gy, P. (1982). Sampling of particulate materials—Theory and practice (2nd ed.). Amsterdam: Elsevier.

    Google Scholar 

  • Gy, P. (2004). Sampling of discrete materials—A new introduction to the theory of sampling. Part I. Qualitative approach. Chemometrics and Intelligent Laboratory Systems, 74, 7–24.

    CAS  Google Scholar 

  • Heuvelink, G. B. M., & Webster, R. (2001). Modelling soil variation: past, present, and future. Geoderma, 100, 269–301.

    Article  Google Scholar 

  • Houston, T. D., & Hiederer, R. (2009). Applying quality assurance procedures to environmental monitoring data: A case study. Journal of Environmental Monitoring, 11, 774–781.

    Article  CAS  Google Scholar 

  • Innes, J. L. (1995). Theoretical and practical criteria for the selection of ecosystem monitoring plots in Swiss forests. Environmental Monitoring and Assessment, 36, 271–294.

    Article  Google Scholar 

  • ISO. (1993). Guide to the expression of uncertainty in measurement (GUM). Geneva: International Organization of Standardization (ISO).

    Google Scholar 

  • Jarvis, N. J., Taylor, A., Larsbo, M., Etana, A., & Rosén, K. (2010). Modelling the effects of bioturbation on the re-distribution of 137Cs in an undisturbed grassland soil. European Journal of Soil Science, 61, 24–34.

    Article  CAS  Google Scholar 

  • Keller, A., Abbaspour, K. C., & Schulin, R. (2002). Assessment of uncertainty and risk in modeling regional heavy-metal accumulation in agricultural soils. Journal of Environmental Quality, 31, 175–187.

    Article  CAS  Google Scholar 

  • Keller, A., Rossier, N., & Desaules, A. (2005). Schwermetallbilanzen von Landwirtschaftsparzellen der Nationalen Bodenbeobachtung. Schriftenreihe der FAL, No. 54. Agroscope FAL Reckenholz, 8046 Zurich, Switzerland. (French version and appendices available under www.nabo.admin.ch> Bibliography no. 129).

  • Keune, H., Murray, A. B., & Benking, H. (1991). Harmonization of environmental measurement. GeoJournal, 23, 249–255.

    Article  Google Scholar 

  • Lark, P. M., Bellamy, P. H., & Kirk, G. J. D. (2006). Baseline values and change in the soil, and implications for monitoring. European Journal of Soil Science, 57, 916.

    Article  Google Scholar 

  • Leimu, R., & Koricheva, J. (2004). Cumulative meta-analysis: A new tool for detection of temporal trends and publication bias in ecology. Proceedings of the Royal Society of London, Series B, 271, 1961–1966.

    Article  Google Scholar 

  • McBride, G. B., Loftis, J. C., & Adkins, N. C. (1993). What do significance tests really tell us about the environment? Environmental Management, 17, 423–432.

    Article  Google Scholar 

  • McNeil, M. A. (2008). Making empirical progress in observational ecology. Environmental Conservation, 35, 193–196.

    Article  Google Scholar 

  • Michener, W. K., Brunt, J. W., Helly, J. J., Kirchner, T. B., & Stafford, S. G. (1997). Nongeospatial metadata for the ecological sciences. Ecological Applications, 7, 330–342.

    Article  Google Scholar 

  • Mol, G., Vriend, S. P., & van Gaans, P. F. M. (1998). Future trends, detectable by soil monitoring networks? Journal of Geochemical Exploration, 62, 61–66.

    Article  CAS  Google Scholar 

  • Morvan, X., Saby, N. P. A., Arrouays, D., Le Bas, C., Jones, R. J. A., Verheijen, F. G. A., Bellamy, P. H., Stephens, M., & Kibblewhite, M. G. (2008). Soil monitoring in Europe: A review of existing systems and requirements for harmonization. The Science of the Total Environment, 391, 1–12.

    Article  CAS  Google Scholar 

  • Olsen, A. R., Sedransk, J., Edwards, D., Gotway, C. A., Liggett, W., Rathbun, S., Reckhow, K. H., & Young, L. J. (1999). Statistical issues for monitoring ecological and natural resources in the United States. Environmental Monitoring and Assessment, 54, 1–45.

    Article  Google Scholar 

  • Potts, J. M., Chapman, S. J., Towers, W., & Campbell, C. D. (2009). Comments on ‘baseline values and change in the soil, and implications for monitoring’ by R.M. Lark, P.H. Bellamy & G.J.D. Kirk. European Journal of Soil Science, 60, 481–484.

    Article  CAS  Google Scholar 

  • Ramsey, M. H., & Ellison, S. L. R. (Eds.) (2007). Measurement uncertainty arising from sampling: A guide to methods and approaches. Eurachem/CITAC Guide, Eurachem. (www.eurachem.org/guides/Ufs_2007.pdf).

  • Reimann, C., & Filzmoser, P. (2000). Normal and lognormal data distribution in geochemistry: death of a myth. Consequences for the statistical treatment of geochemical and environmental data. Environmental Geology, 39, 1001–1014.

    Article  CAS  Google Scholar 

  • Rothstein, H. R., Sutton, A. J., & Borenstein, M. (2005). Publication bias in meta-analysis—prevention, assessment and adjustments. New York: Wiley.

    Book  Google Scholar 

  • Shampine, W. J. (1993). Quality assurance and quality control in monitoring programs. Environmental Monitoring and Assessment, 26, 143–151.

    Article  Google Scholar 

  • Sheppard, S. C. (2005). Assessment of long-term fate of metals in soils: Inferences from analogues. Canadian Journal of Soil Science, 85, 1–18.

    Article  CAS  Google Scholar 

  • Stout, B. B. (1993). The good, the bad and the ugly of monitoring programs: Defining questions and establishing objectives. Environmental Monitoring and Assessment, 26, 91–98.

    Article  Google Scholar 

  • Ter Braak, C. J. F., van Strien, A. J., Meijer, R., & Verstrael, T. J. (1994). In Hagemeijer, E J. M. & Verstrael, T. J. (Eds). Bird numbers 1992. Distribution monitoring and ecological aspects. Statistics Netherlands, Voorburg, 663–673.

  • Urquhart, N. S., Paulsen, S. G., & Larsen, D. P. (1998). Monitoring for policy-relevant regional trends over time. Ecological Applications, 8, 246–257.

    Google Scholar 

  • Vos, P., Meelis, E., & Ter Keurs, W. J. (2000). A framework for the design of ecological monitoring programs as a tool for environmental and nature management. Environmental Monitoring and Assessment, 61, 317–344.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks his colleague Hans Jörg Bachmann and the reviewers for their comments. This study was fully financed by the Swiss Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Desaules.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desaules, A. The role of metadata and strategies to detect and control temporal data bias in environmental monitoring of soil contamination. Environ Monit Assess 184, 7023–7039 (2012). https://doi.org/10.1007/s10661-011-2477-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-2477-9

Keywords

Navigation