Skip to main content

Advertisement

Log in

Goose barnacle Pollicipes pollicipes as biomonitor of metal contamination in the northwest coast of Portugal

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The main objective of this work was to assess the potential use of goose barnacle Pollicipes pollicipes as biomonitor of metal contamination in northwest (NW) coast of Portugal. The concentrations of Cd, Cr, Cu, Fe, Mn, Ni and Zn were determined in coastal seawaters and tissues of P. pollicipes, which allowed establishing correlations between metals in coastal seawaters and P. pollicipes and calculating metal bioaccumulation factors (BAFs). The results of this study showed that P. pollicipes soft tissues can be used for monitoring metal contamination in these coastal seawaters: (1) there were significant correlations (p < 0.05) between metals in soft tissues and their concentrations in seawaters, except for Zn (p > 0.05); (2) soft tissues were sensitive to spatial variations of metal bioavailabilities and their concentrations ranged 0.70–2.22 mg Cd kg−1, 0.49–1.40 mg Cr kg−1, 1.37–2.07 mg Ni kg−1, 2.4–3.3 mg Cu kg−1, 5–59 mg Mn kg−1, 134–578 mg Fe kg−1and 728–1,854 mg Zn kg−1; (3) mean logarithmic bioaccumulation factors (log BAF) of Fe, Cd and Zn were higher, 5.57, 5.47 and 4.41, respectively, than mean log BAFs of Cr, Mn, Cu and Ni, 4.18, 4.14, 3.98 and 3.51, respectively. In contrary, P. pollicipes shell plates were not considered ideal material to monitor metal bioavailabilities in these coastal seawaters. Regarding the very high concentrations of Zn obtained in the coastal seawaters and P. pollicipes soft tissues, the NW coast of Portugal should be classified as “Class III/IV – Remarkably/Highly Polluted”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alexander, G. V., & Rowland, R. H. (1966). Estimation of zinc-65 background levels for marine coastal waters. Nature, 210, 155–157.

    Article  CAS  Google Scholar 

  • Anil, A. C., & Wagh, A. B. (1988). Accumulation of copper and zinc by Balanus amphitrite in a tropical estuary. Marine Pollution Bulletin, 19(4), 177–180.

    Article  CAS  Google Scholar 

  • APHA. (1998a). Standard methods for the examination of water and wastewater. Section: Metals; Method: 3010B – Introduction (20th ed.). Washington: American Public Health Association.

    Google Scholar 

  • APHA. (1998b). Standard methods for the examination of water and wastewater. Section: Metals; Method: 3111C – Flame atomic absorption – Extracted Method (20th ed.). Washington: American Public Health Association.

    Google Scholar 

  • APHA. (1998c). Standard methods for the examination of water and wastewater. Section: Metals; Method: 3113B – electrothermal atomic absorption (20th ed.). Washington: American Public Health Association.

    Google Scholar 

  • APHA. (1998d). Standard methods for the examination of water and wastewater. Section: Introduction; Method: 1030C – Data quality (20th ed.). Washington: American Public Health Association.

    Google Scholar 

  • Barbaro, A., Francescon, A., Polo, B., & Bilio, M. (1978). Balanus Amphitrite (Cirripedia: Thoracica)—A potential indicator of fluoride, copper, lead, chromium and mercury in North Adriatic Lagoons. Marine Biology, 46, 247–257.

    Article  CAS  Google Scholar 

  • Barber, S., & Trefry, J. H. (1981). Balanus eburneus: A sensitive indicator of copper and zinc pollution in the coastal zone. Bulletin of Environmental Contamination and Toxicology, 27, 654–659.

    Article  CAS  Google Scholar 

  • Barnes, M. (1996). Pedunculate cirripedes of the genus Pollicipes. Oceanography and Marine Biology: An Annual Review, 34, 303–394.

    Google Scholar 

  • Blackmore, G. (1999). Temporal and spatial biomonitoring of heavy metals in Hong Kong coastal waters using Tetraclita squamosa. Environmental Pollution, 106(3), 273–283.

    Article  CAS  Google Scholar 

  • Blackmore, G., & Chan, H. M. (1997). Heavy metal concentrations in barnacles (Tetraclita squamosa) in Hong Kong: a revisit. In: B. Morton (Ed.), Proceedings of the Third International Conference on the Marine Biology of the South China Sea, Hong Kong, 1996. The Marine Biology of the South China Sea III, Hong Kong University Press, Hong Kong.

  • Blackmore, G., Morton, B., & Huang, Z. G. (1998). Heavy metals in Balanus amphitrite and Tetraclita squamosa (Crustacea:Cirripedia) collected from the coastal waters of Xiamen, China. Marine Pollution Bulletin, 36(1), 32–40.

    Article  CAS  Google Scholar 

  • Clarke, K. R., & Warwick, R. M. (2001). Change in marine communities: an approach to statistical analysis and interpretation (2nd ed.). Plymouth: PRIMER-E Ltd, Plymouth Marine Laboratory.

    Google Scholar 

  • da Silva, E. T., Ridd, M., Klumpp, D., & Ridd, P. V. (2004). Relative contribution of food and water to the Cd burden in Balanus amphitrite in an urban tidal creek discharging into the Great Barrier Reef lagoon. Estuarine, Coastal and Shelf Science, 60(2), 313–324.

    Article  Google Scholar 

  • da Silva, E. T., Ridd, M., & Klumpp, D. (2005). Can body burden in the barnacle Balanus amphitrite indicate seasonal variation in cadmium concentrations? Estuarine, Coastal and Shelf Science, 65(1–2), 159–171.

    Article  Google Scholar 

  • da Silva, E. T., Klumpp, D. W., & Ridd, M. J. (2009). The barnacle Balanus amphitrite as a bioindicator for Cd: Development and application of a simulation model. Estuarine, Coastal and Shelf Science, 82(2), 171–179.

    Article  Google Scholar 

  • EU (2008). Commission regulation (EC) No 629/2008 of 2 July 2008 Amending regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs. JOL173: 6–9.

  • Fialkowski, W., & Newman, W. A. (1998). A pilot study of heavy metal accumulations in a barnacle from the Salton Sea, southern California. Marine Pollution Bulletin, 36(2), 138–143.

    Article  CAS  Google Scholar 

  • Hockett, D., Ingram, P., & LeFurgey, A. (1995). Barnacle shells analyzed by x-ray imaging can provide a chronological record of metal contamination in estuaries. Microbeam Analysis, 1995, 325–326.

    Google Scholar 

  • Hockett, D., Ingram, P., & LeFurgey, A. (1997). Strontium and manganese uptake in the barnacle shell: Electron probe microanalysis imaging to attain fine temporal resolution of biomineralization activity. Marine Environmental Research, 43(3), 131–143.

    Article  CAS  Google Scholar 

  • Molares, J., & Freire, J. (2003). Development and perspectives for community-based management of the goose barnacle (Pollicipes pollicipes) fisheries in Galicia (NW Spain). Fisheries Research, 65, 485–492.

    Article  Google Scholar 

  • Morillo, J., & Usero, J. (2008). Trace metal bioavailability in the waters of two different habitats in Spain: Huelva estuary and Algeciras Bay. Ecotoxicology and Environmental Safety, 71(3), 851–859.

    Article  CAS  Google Scholar 

  • Morillo, J., Usero, J., & Gracia, I. (2005). Biomonitoring of trace metals in a mine-polluted estuarine system (Spain). Chemosphere, 58, 1421–1430.

    Article  CAS  Google Scholar 

  • Morillo, J., Usero, J., & Bakouri, H. E. (2008). Biomonitoring of heavy metals in the coastal waters of two industrialised bays in southern Spain using the barnacle Balanus amphitrite. Chemical Speciation and Bioavailability, 20(4), 227–237.

    Article  CAS  Google Scholar 

  • Ng, T. Y. T., Amiard-Triquet, C., Rainbow, P. S., Amiard, J. C., & Wang, W.-X. (2005). Physico-chemical form of trace metals accumulated by phytoplankton and their assimilation by filter-feeding invertebrates. Marine Ecology Progress Series, 299, 179–191.

    Article  CAS  Google Scholar 

  • Philips, D. J. H., & Rainbow, P. S. (1988). Barnacles and mussels as monitors of trace elements: a comparative study. Marine Ecology Progress Series, 49, 83–93.

    Article  Google Scholar 

  • Philips, D. J. H., & Rainbow, P. S. (1990). Biomonitoring of trace aquatic contaminants. Barking: Elsevier Science Publishers.

    Google Scholar 

  • Rainbow, P. S. (2007). Trace metal bioaccumulation: models, metabolic availability and toxicity. Environment International, 33(4), 576–582.

    Article  CAS  Google Scholar 

  • Rainbow, P. S., & Blackmore, G. (2001). Barnacles as biomonitors of trace metal availabilities in Hong Kong coastal waters: changes in space and time. Marine Environmental Research, 51(5), 441–463.

    Article  CAS  Google Scholar 

  • Rainbow, P. S., & Smith, B. D. (1992). Biomonitoring of Hong Kong coastal trace metals by barnacles, 1986–1989. In: B. Morton (Ed.), The marine flora and fauna of Hong Kong and Southern China III Proceedings of the Fourth International Marine Biological Workshop: the Marine Flora and Fauna of Hong Kong and Southern China, Hong Kong 1990, Hong Kong University Press, Hong Kong, 585–597.

  • Rainbow, P. S., & Wang, W. X. (2001). Comparative assimilation of Cd, Cr, Se, and Zn by the barnacle Elminius modestus from phytoplankton and zooplankton diets. Marine Ecology Progress Series, 218, 239–248.

    Article  CAS  Google Scholar 

  • Rainbow, P. S., & Wang, W.-X. (2005). Trace metals in barnacles: the significance of trophic transfer. Science in China. Series C, Life Sciences, 48(I), 110–117.

    Article  CAS  Google Scholar 

  • Rainbow, P. S., & White, S. L. (1989). Comparative strategies of heavy-metal accumulation by crustaceans—Zinc, copper and cadmium in a decapod, an amphipod and a barnacle. Hydrobiologia, 174(3), 245–262.

    Article  CAS  Google Scholar 

  • Rainbow, P. S., Wolowicz, M., Fialkowski, W., Smith, B. D., & Sokolowski, A. (2000). Biomonitoring of trace metals in the Gulf of Gdansk, using mussels (Mytilus trossulus) and barnacles (Balanus improvisus). Water Research, 34(6), 1823–1829.

    Article  CAS  Google Scholar 

  • Rainbow, P. S., Smith, B. D., & Lau, S. S. S. (2002). Biomonitoring of trace metal availabilities in the Thames estuary using a suite of littoral biomonitors. Journal of the Marine Biological Association of the United Kingdom, 82(5), 793–799.

    Article  CAS  Google Scholar 

  • Rainbow, P. S., Blackmore, G., & Wang, W.-X. (2003). Effects of previous field-exposure history on the uptake of trace metals from water and food by the barnacle Balanus amphitrite. Marine Ecology Progress Series, 259, 201–213.

    Article  CAS  Google Scholar 

  • Rainbow, P. S., Fialkowski, W., Sokolowski, A., Smith, B. D., & Wolowicz, M. (2004). Geographical and seasonal variation of trace metal bioavailabilities in the Gulf of Gdansk, Baltic Sea using mussels (Mytilus trossulus) and barnacles (Balanus improvisus) as biomonitors. Marine Biology, 144(2), 271–286.

    Article  CAS  Google Scholar 

  • Rainbow, P. S., Ng, T. Y. T., Dalin, S. H. I., & Wang, W.-X. (2004). Acute dietary pre-exposure and trace metal bioavailability to the barnacle Balanus amphitrite. Journal of Experimental Marine Biology and Ecology, 311(2), 315–337.

    Article  CAS  Google Scholar 

  • Reis, P. A., & Almeida, C. M. R. (2008). Matrix importance in animal material pre-treatment for metal determination. Food Chemistry, 107, 1294–1299.

    Article  CAS  Google Scholar 

  • Reis, P. A., Antunes, J. C., & Almeida, C. M. R. (2009). Metal levels in sediments from the Minho estuary salt marsh: a metal clean area? Environmental Monitoring and Assessment, 159, 191–205.

    Article  CAS  Google Scholar 

  • Reis, P. A., Salgado, M. A., & Vasconcelos, V. (2011). Barnacles as biomonitors of metal contamination in coastal waters. Estuarine, Coastal and Shelf Science, 93, 269–278.

    Article  CAS  Google Scholar 

  • Ruelas-Inzunza, J. R., & Paez-Osuna, F. (2000). Comparative bioavailability of trace metals using three filter-feeder organisms in a subtropical coastal environment (Southeast Gulf of California). Environmental Pollution, 107(3), 437–444.

    Article  CAS  Google Scholar 

  • Salvado, J. (2009). Qualidade das Águas Balneares - Relatório Anual de 2008: Aplicação da Directiva 76/160/CEE e da Directiva 2006/7/CE. INAG – Divisão da Qualidade da Água, Lisboa, Portugal, pp. 155.

  • SFT (2007). Guidelines for classification of environmental quality in fjords and coastal areas. Revision of classification of metals and organic contaminants in water and sediment. Norwegian Pollution Control Authority SFT TA-2229/2007.

  • Silva, C. A. R., Smith, B. D., & Rainbow, P. S. (2006). Comparative biomonitors of coastal trace metal contamination in tropical South America (N. Brazil). Marine Environmental Research, 61, 439–455.

    Article  CAS  Google Scholar 

  • Stenner, R. D., & Nickless, G. (1975). Heavy metals in organisms of the Atlantic coast of South-West Spain and Portugal. Marine Pollution Bulletin, 6, 89–92.

    Article  CAS  Google Scholar 

  • Turkmen, M., Turkmen, A., Akyurt, I., & Tepe, Y. (2005). Limpet, Patella caerulea Linnaeus, 1758 and barnacle, Balanus sp., as biomonitors of trace metal availabilities in Iskenderun Bay, northern east Mediterranean sea. Bulletin of Environmental Contamination and Toxicology, 74(2), 301–307.

    Article  CAS  Google Scholar 

  • Varian. (1988). Analytical methods for graphite tube atomizers. Publication No. 85-100848-00 (p. 193). Mulgrave: Varian Australia Pty Ltd.

    Google Scholar 

  • Varian. (1989). Analytical methods for flame atomic absorption spectrometry. Publication No. 85-100009-00 (p. 146). Mulgrave: Varian Australia Pty Ltd.

    Google Scholar 

  • Vasconcelos, M. T. S. D., & Leal, M. F. D. (1997). Speciation of Cu, Pb, Cd and Hg in waters in the Oporto Coast in Portugal, using pre-concentration in a chelamine resin column. Analytica Chimica Acta, 353, 189–198.

    Article  CAS  Google Scholar 

  • Viarengo, A., & Nott, J. A. (1993). Mechanisms of heavy-metal cation homeostasis in marine-invertebrates. Comparative Biochemistry and Physiology. Part C, Pharmacology, Toxicology & Endocrinology, 104(3), 355–372.

    Google Scholar 

  • Walker, G., Rainbow, P. S., Foster, P., & Crisp, D. J. (1975). Barnacles: Possible indicators of zinc pollution? Marine Biology, 30, 57–65.

    Article  CAS  Google Scholar 

  • Wang, W. X., & Rainbow, P. S. (2000). Dietary uptake of Cd, Cr, and Zn by the barnacle Balanus trigonus: Influence of diet composition. Marine Ecology Progress Series, 204, 159–168.

    Article  CAS  Google Scholar 

  • Wang, W. X., & Rainbow, P. S. (2005). Influence of metal exposure history on trace metal uptake and accumulation by marine invertebrates. Ecotoxicology and Environmental Safety, 61(2), 145–159.

    Article  CAS  Google Scholar 

  • Wang, W. X., & Rainbow, P. S. (2008). Comparative approaches to understand metal bioaccumulation in aquatic animals. Comparative Biochemistry and Physiology C-Toxicology & Pharmacology, 148(4), 315–323.

    Article  Google Scholar 

  • Wang, W. X., Qiu, J. W., & Qian, P.-Y. (1999). The trophic transfer of Cd, Cr, and Se in the barnacle Balanus amphitrite from planktonic food. Marine Ecology Progress Series, 187, 191–201.

    Article  CAS  Google Scholar 

  • Watson, D., Foster, P., & Walker, G. (1995). Barnacle shells as biomonitoring material. Marine Pollution Bulletin, 31(1–3), 111–115.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitor Vasconcelos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reis, P.A., Salgado, M.A. & Vasconcelos, V. Goose barnacle Pollicipes pollicipes as biomonitor of metal contamination in the northwest coast of Portugal. Environ Monit Assess 184, 6987–7000 (2012). https://doi.org/10.1007/s10661-011-2474-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-2474-z

Keywords

Navigation