Skip to main content

Advertisement

Log in

Characterizing ecological risk for polycyclic aromatic hydrocarbons in water from Lake Taihu, China

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Lake Taihu provides vital ecological services for humans in China; it receives a great deal of attention regarding its ecological and environmental conditions. In this study, the ecological risks of eight individual polycyclic aromatic hydrocarbons (PAHs) in water were assessed using probabilistic distributions of the hazard quotient based on Monte Carlo simulation. The results show that the 95th percentile of the hazard quotients ranged from 0.00074 to 2.831, and the ecological risk of Flua was highest, followed by, in descending order of risk, B[a]P > Pyr > Ant > Phe > Flu > Ace > Chr. The probabilities of hazard quotients exceeding a decision criteria of 0.3 were 18.09%, 6.51%, 3.76%, and 2.85% for Flua, B[a]P, Pyr, and Ant, respectively, indicating their potential ecological risks to aquatic organisms. The spatial distribution of hazard quotients for these four individual PAHs with potential ecological risk were obtained using Geographic Information System (GIS), and similar spatial distribution patterns were also observed in the lake. The highest ecological risks of these four individual PAHs to aquatic organisms were found in Meiliang Bay, followed by Gonghu Bay and Xukou Bay. The uncertainty within the ecological risk assessment was also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aldenberg, T. (1993). Confidence limits for hazardous concentrations based on log-logistically distributed NOEC toxicity data. Ecotoxicology and Envrionmental Safety, 25(1), 48–63.

    Article  CAS  Google Scholar 

  • Carriger, J. F., & Rand, G. M. (2008). Aquatic risk assessment of pesticides in surface waters in and adjacent to the Everglades and Biscayne National Parks: I hazard assessment and problem formulation. Ecotoxicology, 17(7), 660–679.

    Article  CAS  Google Scholar 

  • Chiang, K. C., Chio, C. P., Chiang, Y. H., & Liao, C. M. (2009). Assessing hazardous risks of human exposure to temple airborne polycyclic aromatic hydrocarbons. Journal of Hazardous Materials, 166(2–3), 676–685.

    Article  CAS  Google Scholar 

  • Countway, R. E., Dickhut, R. M., & Canuel, E. A. (2003). Polycyclic aromatic hydrocarbon (PAH) distributions and associations with organic matter in surface waters of the York River, VA Estuary. Organic Geochemistry, 34(2), 209–224.

    Article  CAS  Google Scholar 

  • De Luca, G., Furesi, A., Leardi, R., Micera, G., Panzanelli, A., & Piu, P. C. (2004). Polycyclic aromatic hydrocarbons assessment in the sediments of the Porto Torres Harbor (Northern Sardinia, Italy). Marine Chemical, 86(1–2), 15–32.

    Article  Google Scholar 

  • Duvall, S. E., & Barron, M. G. (2000). A screening level probabilistic of mercury in Florida Everglades food webs. Ecological and Environmental Safety, 47(3), 298–305.

    Article  CAS  Google Scholar 

  • Fernandes, M. B., Sicre, M. A., Boireau, A., & Tronczynski, J. (1997). Polyaromatic hydrocarbon (PAH) distributions in the Senie River and its estuary. Marine Pollution Bulletin, 34(11), 857–867.

    Article  CAS  Google Scholar 

  • Guo, G. H., Wu, F. C., He, H. P., Zhang, R. Q., Feng, C. L., Li, H. X., Liao, H. Q., & Zhao, X. L. (2011a). Ecological risk assessment of PAHs in the Meiliang Bay, Gonghu Bay, and Xukou Bay of Lake Taihu. Acta Scientiae Circumstantiae, 31(12), 2545–2556.

    CAS  Google Scholar 

  • Guo, J. Y., Wu, F. C., Zhang, L., Liao, H. Q., Zhang, R. Y., Li, W., et al. (2011b). Screening level of PAHs in sediment core from Lake Hongfeng, Southwest China. Archives of Environmental Contamination Toxicology, 60(4), 590–596.

    Article  CAS  Google Scholar 

  • Hall, L. W., Jr., & Anderson, R. D. (1999). A deterministic ecological risk assessment for copper in European saltwater environments. Marine Pollution Bulletin, 38(3), 207–218.

    Article  CAS  Google Scholar 

  • Hall, L. W., Jr., Scott, M. C., & Killen, W. D. (1998). Ecological risk assessment of copper and cadmium in surface waters of Chesapeake Bay watershed. Environment Toxicology and Chemistry, 17(6), 1172–1189.

    Article  CAS  Google Scholar 

  • Heemken, O. P., Stachel, B., Theobald, N., & Wenclawiak, B. W. (2000). Temporal variability of organic micropollutants in suspended particulate matter of the River Elbe at Hamburg and the River Mulde at Dessau, Germany. Archives of Environmental Contamination Toxicology, 38(1), 11–31.

    Article  CAS  Google Scholar 

  • Kukkonen, J., & Landrum, P. F. (1994). Toxicokinetics and toxicity of sediment-associated pyrene to Lumbriculus variegatus (Oligochaeta). Environment Toxicology and Chemistry, 13(9), 1457–1468.

    Article  CAS  Google Scholar 

  • Landrum, P. F., Lydy, M. J., & Lee, H. (1992). Toxicokinetics in aquatic systems: model comparisons and use in hazard assessment. Environmental Toxicology and Chemistry, 11(12), 1709–1725.

    Article  CAS  Google Scholar 

  • Landrum, P. F., Dupuis, W. S., & Kukkomen, J. (1994). Toxicokinetics and toxicity of sediment-associated pyrene and phenanthrene in Diporeia spp. Examination of equilibrium-partitioning theory and residue-bases effects for assessing hazard. Environmental Toxicology Chemistry, 13(11), 1769–1780.

    CAS  Google Scholar 

  • Läng, R., Hutchinson, T. H., Scholz, N., & SolbÉ, J. (1998). Analysis of the ecetoc aquatic toxicity database II—Comparison of acute to chronic ratios for various acute to chronic ratios for various aquatic organisms and chemical substances. Chemosphere, 36(1), 115–127.

    Article  Google Scholar 

  • Liu, A. X., Lang, Y. H., Xue, L. D., Liao, S. L., & Zhou, H. (2009). Probabilistic ecological risk assessment and source apportionment of polycyclic aromatic hydrocarbons surface sediments from Yellow Sea. Bulletin Environmental Contamination Toxicology, 83(5), 681–687.

    Article  CAS  Google Scholar 

  • Lotufo, G. R., & Fleeger, J. W. (1996). Toxicity of sediment-associated pyrene and phenanthrene to Limnodrilius hoffmeisteri (Oligochaeta: Tubificidae). Environmental Toxicology and Chemistry, 15(9), 1508–1516.

    CAS  Google Scholar 

  • Ma, B., & Zhang, X. L. (2000). Regional ecological risk assessment of selenium in Jilin Province, China. Science of the Total Environment, 262(1–2), 103–110.

    Google Scholar 

  • Meng, W., & Wu, F. C. (2010). Introduction of water quality criteria theory and methodology. Beijing: Science.

    Google Scholar 

  • Oughton, D. H., Agüero, A., Avila, R., Brown, J. E., Copplestone, D., & Gilek, M. (2008). Addressing uncertainties in the ERICA integrated approach. Journal of Environmental Radioactivity, 99(9), 1348–1392.

    Article  Google Scholar 

  • Parkhurst, B. R., Cadmus Group, & Water Environment Research Foundation (WERF). (1996). Aquatic ecological risk assessment: a multi-tiered approach. Alexandria: Water Environment Federation.

    Google Scholar 

  • Patrolecco, L., Ademollo, N., Capri, S., Pagnotta, R., & Polesello, S. (2010). Occurrence of priority hazardous PAHs in water, suspended particulate matter, sediment and common eels (Anguilla anguilla) in the urban stretch of the River Tiber (Italy). Chemosphere, 8(11), 1386–1392.

    Article  Google Scholar 

  • Peterson, C. H., Rice, S. D., Short, J. W., Esler, D., Bodkin, J. L., Ballachey, B. E., et al. (2003). Long-term ecosystem response to the Exxon Valdez oil spill. Science, 302(5653), 2082–2086.

    Article  CAS  Google Scholar 

  • Posthuma, L., Suter, G. W., II, & Traas, T. P. (2002). Species sensitivity distributions in ecotoxicology. Boca Raton: CRC Press LLC.

    Google Scholar 

  • Price, P. S., Young, J. S., & Christine, C. F. (2001). Assessing aggregates and cumulative pesticide risks using a probabilistic model. The Annals of Occupational Hygiene, 45(1), 131–142.

    Article  Google Scholar 

  • Qiao, M., Wang, C. X., Huang, S. B., Wang, D. H., & Wang, Z. J. (2006). Composition, sources, and potential toxicological significance of PAHs in the surface sediments of the Meiliang Bay, Taihu Lake, China. Environment International, 32(1), 28–33.

    Article  CAS  Google Scholar 

  • Qiao, M., Huang, S. B., Zhu, Y. G., & Wang, Z. J. (2007). Ecological risk assessment of polycyclic aromatic hydrocarbons in sediments of Meiliang Bay, Taihu Lake. Asian Journal of Ecotoxicology, 2(4), 456–463.

    CAS  Google Scholar 

  • Schuler, L. J., Hoang, T. C., & Rand, G. M. (2008). Aquatic risk assessment of copper in freshwater and salterwater ecosystems of South Florida. Ecotoxicology, 17, 642–659.

    Article  CAS  Google Scholar 

  • Solomon, K. R., Baker, D. B., Richards, R. P., Dixon, K. P., Klaine, S. J., La Ponit, T. W., et al. (1996). Ecological risk assessment of atrazine in North American surface waters. Environmental Toxicology and Chemistry, 15(1), 31–76.

    Article  CAS  Google Scholar 

  • Solomon, K., Giesy, J., & Jones, P. (2000). Probabilistic risk assessment of agrochemicals in the environment. Crop Protection, 19(8–10), 649–655.

    Article  Google Scholar 

  • Srogi, K. (2007). Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: A review. Environmental Chemistry Letters, 5(4), 169–195.

    Article  CAS  Google Scholar 

  • Swartjes, F. A. (1999). Risk based assessment of soil and groundwater quality in the Netherlands: Standards and remediation urgency. Risk Analysis, 19(6), 1235–1249.

    CAS  Google Scholar 

  • Swartz, R. C., Schults, D. W., Ozretich, R. J., Lamberson, J. O., Cole, F. A., Ferraro, S. P., et al. (1995). ΣPAH: A model to predict the toxicity of polynuclear aromatic hydrocarbon mixtures in field-collected sediments. Environmental Toxicity and Chemistry, 14(11), 1977–1987.

    Article  CAS  Google Scholar 

  • USEPA. (1993). Provisional guidance for quantitative risk assessment of polycyclic aromatic hydrocarbons. Office of Research and Development, EPA/600/R-93/089, Washington DC.

  • Vose, D. (1996). Quantitative risk assessment—A guide to Monte Carlo simulation modeling. England: Wiley.

    Google Scholar 

  • Wagner, C., & Løkke, H. (1991). Estimation of ecological protection levels from NOEC toxicity data. Water Research, 25(10), 1237–1242.

    Article  CAS  Google Scholar 

  • Wang, X. L., Tao, S., Dawson, R. W., & Xu, F. L. (2002). Characterizing and comparing risks of polycyclic aromatic hydrocarbons in a Tianjin wastewater irrigated area. Environment Research, 90(3), 201–206.

    Article  CAS  Google Scholar 

  • Weinstein, J. E., Crawford, K. D., & Garner, T. R. (2010). Polycyclic aromatic hydrocarbon contamination in stormwater detention pond sediments in coastal South Carolina. Environment Monitoring and Assessment, 162(1–4), 21–35.

    Article  CAS  Google Scholar 

  • Wu, F. C. (2009). National organic matter and its relations with pollutants in the environment. Beijing: Science.

    Google Scholar 

  • Yang, Y., Shi, X., Wong, P. K., & Dawson, R. (2006). An approach to assess ecological risk for polycyclic aromatic hydrocarbons in surface water from Tianjin. Journal of Environmental Science and Health, 41(8), 1463–1482.

    CAS  Google Scholar 

  • Zhang, S. Y., Zhang, Q., Darsaw, S., Ehie, O., & Wang, G. D. (2007). Simultaneous quantification of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and pharmaceuticals and personal care products (PPCPs)in Mississippi river water, in New Orleans, Louisiana, USA. Chemosphere, 66(6), 1057–1069.

    Article  CAS  Google Scholar 

  • Zhong, W. J., Wang, D. H., Xu, X. W., Luo, Q., Wang, B. Y., Shan, X. Q., et al. (2010). Screening level ecological risk assessment for phenols in surface water of the Taihu Lake. Chemosphere, 80(9), 998–1005.

    Article  CAS  Google Scholar 

  • Zhou, J. L., & Maskaoui, K. (2003). Distribution of polycyclic aromatic hydrocarbons in water and surface sediment from Daya Bay, China. Environment Pollution, 121(2), 269–281.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the National Basic Research Program of China (2008CB418200) and National Science Foundation (40873080, U0833603, and 41130743).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengchang Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, G., Wu, F., He, H. et al. Characterizing ecological risk for polycyclic aromatic hydrocarbons in water from Lake Taihu, China. Environ Monit Assess 184, 6815–6825 (2012). https://doi.org/10.1007/s10661-011-2460-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-2460-5

Keywords

Navigation