Skip to main content
Log in

Pool of mobile and immobile phosphorus in sediments of the large, shallow Lake Peipsi over the last 100 years

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Temporal variations in sediment phosphorus (P) composition and mobility were estimated in surface sediments of accumulation (core PS509 44 cm) and erosion (core PS2009 30 cm) areas of the shallow, large Lake Peipsi sensu stricto (s.s.; 2611 km2, unregulated water level). The P pool in sediments including buried and mobile P is evaluated for the first time, which will provide baseline data for the future modelling of internal loading in L. Peipsi. Five sedimentary P fractions (including inorganic and nonreactive P) were separately quantified: loosely adsorbed and pore-water P (NaCl-P); redox-sensitive fraction P (NaBD-P); P bound to oxides of non-reducible Fe and Al (NaOH-P); calcium-bound P, mainly from apatite minerals (HCl-P) and refractory, mainly organic P (Res-P). Concentrations of P fractions varied during the 100 years with the highest values around 2007–2008 and 1923–1935. The P in “active” layers that are available for bacteria and algae or those undergoing changes and diagenetic transformations in the sediment could follow sediments with the water content of ∼88%. Potentially mobile P is not decreased in the sediments deposited 50–100 years ago and makes up ca 63 mg m–2 y–1 (with range 8.3–23.7% of the total P (TP)) in the accumulation area, and ca 0.047 mg cm–3 (with range 1.3–22.4% of TP) in the erosion area. The result shows that 13–60% of TP contained in the surface sediment (from 34 to 398 mg P m–2 y–1) has been remobilised during accumulation and could be exported to the overlying water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahlgren, J., Tranvik, L., Gogoll, A., Waldebäck, M., Markides, K., & Rydin, E. (2005). Sediment depth attenuation of biogenic phosphorus compounds measured by 31P NMR. Environmental Science and Technology, 39, 867–872.

    Article  CAS  Google Scholar 

  • Appleby, P. G., & Oldfield, F. (1983). The assessment of 210Pb data from sites with varying sediment accumulation rates. Hydrobiologia, 103, 29–35.

    Article  CAS  Google Scholar 

  • Appleby, P. G., Nolan, P. J., Gifford, D. W., Godfrey, M. J., Oldfield, F., Anderson, N. J., & Battarbee, R. W. (1986). 210Pb dating by low-background gamma counting. Hydrobiologia, 143, 21–27.

    Article  CAS  Google Scholar 

  • Baldwin, D. S. (1996). The phosphorus composition of a diverse series of Australian sediments. Hydrobiologia, 335, 63–73.

    Article  CAS  Google Scholar 

  • Boström, B., Jansson, M., & Forsberg, C. (1982). Phosphorus release from lake sediments. Archiv für Hydrobiologie–Beiheft Ergebnisse der Limnologie, 18, 5–59.

    Google Scholar 

  • Buhvestova, O., Kangur, K., Haldna, M., & Möls, T. (2011). Nitrogen and phosphorus in Estonian rivers discharging into Lake Peipsi: Estimation of loads and seasonal and spatial distribution of concentrations. Estonian Journal of Ecology, 60, 18–38.

    Article  Google Scholar 

  • Davydova, N. (1981). Diatoms in sediment cores from Lake Peipsi–Pskov. In A. Raukas (Ed.), Bottom deposits of Lake Peipsi (pp. 74–81). Tallinn (in Russian): Estonian Academy of Sciences.

    Google Scholar 

  • Gonsiorczyk, T., Casper, P., & Koschel, R. (1998). Phosphorus-binding forms in the sediment of an oligotrophic and an eutrophic hardwater lake of the Baltic Lake district (Germany). Water Science and Technology, 37, 51–58.

    Article  CAS  Google Scholar 

  • Grimm, E. C. (1990). TILIA and TILIA GRAPH. PC spreadsheet and graphics software for pollen data. INQUA Working Group on Data-Handling Methods. Newsletter, 4, 5–7.

    Google Scholar 

  • Hang, T., & Miidel, A. (1999). Lake deposits: thickness and structure. In A. Miidel & A. Raukas (Eds.), Lake Peipsi: Geology (pp. 59–61). Tallinn: Sulemees.

    Google Scholar 

  • Heinsalu, A., Alliksaar, T., Leeben, A., & Nõges, T. (2007). Sediment diatom assemblages and composition of pore-water dissolved organic matter reflect recent eutrophication history of Lake Peipsi (Estonia/Russia). Hydrobiologia, 584, 133–143.

    Article  CAS  Google Scholar 

  • Heiri, O., Lotter, A. F., & Lemcke, G. (2001). Loss on ignition as method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology, 25, 101–110.

    Article  Google Scholar 

  • Hieltjes, A. H. M., & Lijklema, L. (1980). Fractionation of inorganic phosphates in calcareous sediments. Journal of Environmental Quality, 9, 405–407.

    Article  CAS  Google Scholar 

  • Jaani, A. (2001). The location, size and general characterization of Lake Peipsi and its catchment area. In T. Nõges (Ed.), Lake Peipsi. Meteorology, hydrology, hydrochemistry (pp. 10–17). Tartu: Sulemees.

    Google Scholar 

  • Jaani, A., Klaus, L., Pärn, O., Raudsepp, U., Zadonskaja, O., Gronskaja, T., & Solntsev, V. (2008). Hydrology. In J. Haberman, T. Timm, & A. Raukas (Eds.), Peipsi (pp. 113–155). Tartu (in Estonian): Eesti Loodusfoto.

    Google Scholar 

  • Jansson, M., Olsson, H., & Pettersson, K. (1988). Phosphatase: origin, characteristics and function in lakes. Hydrobiologia, 170, 157–175.

    Article  CAS  Google Scholar 

  • Jensen, H. S., & Thamdrup, B. (1993). Iron bound phosphorus in marine sediments as measured by bicarbonate-dithionite extraction. Hydrobiologia, 253, 47–59.

    Article  CAS  Google Scholar 

  • Jensen, J. P., Pedersen, A. R., Jeppesen, E., & Søndergaard, M. (2006). An empirical model describing the seasonal dynamics of phosphorus in 16 shallow eutrophic lakes after external loading reduction. Limnology and Oceanography, 51, 791–800.

    Article  CAS  Google Scholar 

  • Jeppesen, E., Søndergaard, M., Jensen, J. P., Havens, K. E., Anneville, O., Carvalho, L., et al. (2005). Lake responses to reduced nutrient loading—an analysis of contemporary long-term data from 35 case studies. Freshwater Biology, 50, 1747–1771.

    Article  CAS  Google Scholar 

  • Kaiserli, A., Voutsa, D., & Samara, C. (2002). Phosphorus fractionation in lake sediments, Lakes Volvi and Koronia, N. Greece. Chemosphere, 46, 1147–1155.

    Article  CAS  Google Scholar 

  • Kangur, K., & Möls, T. (2008). Changes in spatial distribution of phosphorus and nitrogen in the large north-temperate lowland Lake Peipsi (Estonia/Russia). Hydrobiologia, 599, 31–39.

    Article  CAS  Google Scholar 

  • Kapanen, G. (2008). Phosphorus fractionation in lake sediment. Estonian Journal of Ecology, 57, 244–255.

    Article  Google Scholar 

  • Katsev, S., Tsandev, I., L'Heureux, I., & Rancourt, D. G. (2006). Factors controlling long-term phosphorus efflux from lake sediments: Exploratory reactive-transport modeling. Chemical Geology, 234, 127–147.

    Article  CAS  Google Scholar 

  • Kleeberg, A., Herzog, C., Jordan, S., & Hupfer, M. (2010). What drives the evolution of the sedimentary phosphorus cycle? Limnologica, 40, 102–113.

    Article  CAS  Google Scholar 

  • Kuhrts, C., Fennel, W., & Seifert, T. (2004). Model studies of transport of sediments material in the western Baltic. Journal of Marine Systems, 53, 167–190.

    Article  Google Scholar 

  • Laugaste, R., Nõges, P., Nõges, T., Yastremskij, V. V., Milius, A., & Ott, I. (2001). Algae. In E. Pihu & J. Haberman (Eds.), Lake Peipsi: Flora and fauna (pp. 31–49). Tartu: Sulemees.

    Google Scholar 

  • Leeben, A., Tõnno, I., Freiberg, R., Lepane, V., Bonningues, N., Makarõtseva, N., et al. (2008). History of anthropogenically mediated eutrophication of Lake Peipsi as revealed by the stratigraphy of fossil pigments and molecular size fractions of pore-water dissolved organic matter. Hydrobiologia, 599, 49–58.

    Article  CAS  Google Scholar 

  • Lijklema, L., Koelmans, A. A., & Portielje, R. (1993). Water quality impacts of sediment pollution and the role of early diagenesis. Water Science and Technology, 28, 1–12.

    CAS  Google Scholar 

  • Loigu, E., Leisk, Ü., Iital, A., & Pachel, K. (2008). Pollution load and water quality of the Lake Peipsi basin. In J. Haberman, T. Timm, & A. Raukas (Eds.), Peipsi (pp. 179–199). Tartu (in Estonian): Eesti Loodusfoto.

    Google Scholar 

  • Lukkari, K. (2008). Chemical characteristics and behaviour of sediment phosphorus in the northeastern Baltic Sea. [Academic dissertation in Environmental Soil Science, 17] Finnish Institute of Marine Research, Finland, Helsinki.

  • Lukkari, K., Hartikainen, H., & Leivuori, M. (2007). Fractionation of sediment phosphorus revisited. I: Fractionation steps and their biogeochemical basis. Limnology and Oceanography: Methods, 5, 433–444.

    Article  CAS  Google Scholar 

  • Marsden, M. W. (1989). Lake restoration by reducing external phosphorus loading: The influence of sediment phosphorus release. Freshwater Biology, 21, 139–162.

    Article  CAS  Google Scholar 

  • Moore, P. A., Reddy, K. R., & Fisher, M. M. (1998). Phosphorus flux between sediment and overlying water in Lake Okeechobee, Florida: Spatial and temporal variations. Journal of Environmental Quality, 27, 1428–1439.

    Article  CAS  Google Scholar 

  • Mourad, D. S. J., Van der Perk, M., & Piirimäe, K. (2006). Changes in nutrient emissions, fluxes and retention in a North-Eastern European lowland drainage basin. Environmental Monitoring and Assessment, 120, 415–448.

    Article  CAS  Google Scholar 

  • Murphy, J., & Riley, I. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31–36.

    Article  CAS  Google Scholar 

  • Nõges, P., & Kisand, A. (1999). Forms and mobility of sediment phosphorus in shallow eutrophic Lake Võrtsjärv (Estonia). International Review of Hydrobiology, 84, 255–270.

    Google Scholar 

  • Nõges, P., Leisk, Ü., Loigu, E., Reihan, A., Skakalski, B., & Nõges, T. (2003). Nutrient budget of Lake Peipsi in 1998. Proceedings of the Estonian Academy of Sciences: Biology, Ecology, 52, 407–422.

    Google Scholar 

  • Nõges, T., Alliksaar, T., Heinsalu, A., & Nõges, P. (2006). A paleolimnological assessment of recent eutrophication history on large inland water body, Lake Peipsi, Estonia. Verhandlungen der internationalen Vereinigung für theoretische und angewandte Limnologie, 29, 1135–1138.

    Google Scholar 

  • Nõges, T., Järvet, A., Kisand, A., Laugaste, R., Loigu, E., Skakalski, B., & Nõges, P. (2007). Reaction of large and shallow lakes Peipsi and Võrtsjärv to the changes of nutrient loading. Hydrobiologia, 584, 253–264.

    Article  Google Scholar 

  • Nürnberg, G. K. (1984). The prediction of internal phosphorus load in lakes with anoxic hypolimnia. Limnology and Oceanography, 29, 111–124.

    Article  Google Scholar 

  • Paludan, C., & Jensen, H. S. (1995). Sequential extraction of P infreshwater wetland and lake sediment: Significance of humic acids. Wetlands, 15, 365–373.

    Article  Google Scholar 

  • Perrone, U., Facchinelli, A., & Sacchi, E. (2008). Phosphorus dynamics in a small eutrophic Italian lake. Water, Air, and Soil Pollution, 189, 335–351.

    Article  CAS  Google Scholar 

  • Psenner, R., Boström, B., Dinka, M., Pettersson, K., Pucsko, R., & Sager, M. (1988). Fractionation of phosphorus in suspended matter and sediment. Archiv für Hydrobiologie–Beiheft Ergebnisse der Limnologie, 30, 98–110.

    Google Scholar 

  • Punning, J.-M., & Kapanen, G. (2009). Phosphorus flux in Lake Peipsi sensu stricto, Eastern Europe. Estonian Journal of Ecology, 58, 3–17.

    Article  Google Scholar 

  • Punning, J.-M., Terasmaa, J., Vaasma, T., & Kapanen, G. (2008). Historical changes in the concentrations of polycyclic aromatic hydrocarbons (PAHs) in Lake Peipsi sediments. Environmental Monitoring and Assessment, 144, 131–141.

    Article  CAS  Google Scholar 

  • Punning, J.-M., Raukas, A., Terasmaa, J., & Vaasma, T. (2009). Surface sediments of transboundary Lake Peipsi: composition, dynamics and role in matter cycling. Environmental Geology, 57, 943–951.

    Article  CAS  Google Scholar 

  • Ramm, K., & Scheps, V. (1997). Phosphorus balance of a polytrophic shallow lake with the consideration of phosphorus release. Hydrobiologia, 342–343, 43–53.

    Article  Google Scholar 

  • Raukas, A. (1999). Bottom topoghaphy. In A. Miidel & A. Raukas (Eds.), Lake Peipsi: Geology (pp. 57–59). Tallinn: Sulemees.

    Google Scholar 

  • Rumyantsev, V. A., Kondrat’ev, S. A., Basova, S. L., Shmakova, M. V., Zhuravkova, O. N., & Savitskaya, N. V. (2006). Chudsko–Pskovskii Lake Complex: Monitoring and modeling phosphorus regime. Water Resources, 33, 661–669.

    Article  CAS  Google Scholar 

  • Simon, N. S., Lynch, D., & Gallaher, T. N. (2009). Phosphorus fractionation in sediment cores collected in 2005 before and after onset of an Aphanizomenon flos-aquae bloom in upper Klamath Lake, OR, USA. Water, Air, and Soil Pollution, 204, 139–153.

    Article  CAS  Google Scholar 

  • Smith, D. R., Warnemuende, E. A., Haggard, B. E., & Huang, C. (2006). Changes in sediment–water column phosphorus interactions following sediment disturbance. Ecological Engineering, 27, 71–78.

    Article  Google Scholar 

  • Søndergaard, M., Jensen, J. P., & Jeppesen, E. (2003). Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia, 506–509, 135–145.

    Article  Google Scholar 

  • Spears, B. M., Carvalho, L., Perkins, R., Kirika, A., & Paterson, D. M. (2007). Sediment phosphorus cycling in a large shallow lake: Spatio-temporal variation in phosphorus pools and release. Hydrobiologia, 584, 37–48.

    Article  CAS  Google Scholar 

  • Stålnacke, P., Sults, Ü., Vasiliev, A., Skakalsky, B., Botina, A., Roll, G., et al. (2002). An assessment of riverine loads of nutrients to Lake Peipsi, 1995–1998. Archiv für Hydrobiologie, Supplement, 141, 437–457.

    Google Scholar 

  • Starast, H., Milius, A., Möls, T., & Lindpere, A. (2001). Hydrochemistry. In T. Nõges (Ed.), Lake Peipsi (3): Meteorology, hydrology, hydrochemistry (pp. 97–131). Tartu: Sulemees.

    Google Scholar 

  • Tavast, E. (2009). Changing factors of the coasts of Lake Peipsi, North-Eastern Europe. Quaternary International, 207, 130–136.

    Article  Google Scholar 

  • Turner, B. L., Frossart, E., & Baldwin, D. S. (2005). Organic phosphorus in the environment. Wallingford: CABI.

    Book  Google Scholar 

  • Uhlmann, D., Röske, I., Hupfer, M., & Ohms, G. (1990). A simple method to distinguish between polyphosphate and other phosphate fractions of activated sludge. Water Resources, 24, 1355–1360.

    CAS  Google Scholar 

  • Van Eck, G. T. M. (1982). Forms of phosphorus in particulate matter from the Hollands Diep/Haringvliet, The Netherlands. Hydrobiologia, 92, 665–681.

    Google Scholar 

  • Vaasma, T., & Terasmaa, J. (2010). Surface sediment studies in Lake Peipsi in 2006-2009. In M. Kangur, V. Kraav, H. Palang, & J.-M. Punning (Eds.), Eesti Geograafia Seltsi aastaraamat (pp. 117–130). Tallinn (in Estonian): Eesti Geograafia Selts.

    Google Scholar 

  • Waara, T., Jansson, M., & Petterson, K. (1993). Phosphorus composition and release in sediment bacteria of the genus Pseudomonas during aerobic and anaerobic conditions. Hydrobiologia, 253, 131–140.

    Article  CAS  Google Scholar 

  • Wang, S. R., Jin, X. C., Pang, Y., Zhao, H. C., Zhou, X. N., & Wu, F. C. (2005). Phosphorus fractions and phosphate sorption characteristics in relation to the sediment compositions of shallow lakes in the middle and lower reaches of the Yangtze River region, China. Journal of Colloid and Interface Science, 289, 339–346.

    Article  CAS  Google Scholar 

  • Wu, F. C., Qing, H. R., & Wan, G. J. (2001). Regeneration of N, P, and Si near the sediment/water interface of lakes from southwestern China plateau. Water Resources, 35(5), 1334–1337.

    CAS  Google Scholar 

  • Zhang, R., Wu, F., Liu, C., Fu, P., Li, W., Wang, L., et al. (2008). Characteristics of organic phosphorus fractions in different trophic sediments of lakes from the middle and lower reaches of Yangtze River region and Southwestern Plateau, China. Environmental Pollution, 152, 366–372.

    Article  CAS  Google Scholar 

  • Zhou, Q. X., Gibson, C. E., & Zhu, Y. M. (2001). Evaluation of phosphorus bioavailability in sediment of three contrasting lakes in China and the UK. Chemosphere, 42, 221–225.

    Article  CAS  Google Scholar 

  • Zhou, Y., Song, C., Cao, X., Li, J., Chen, G., Xia, Z., & Jiang, P. (2008). Phosphorus fractions and alkaline phosphatase activity in sediments of a large eutrophic Chinese lake (Lake Taihu). Hydrobiologia, 599, 119–125.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the Estonian Ministry of Education and Research (SF0280016s07) and the Estonian Science Foundation (ETF 7392) is gratefully acknowledged. The author thanks Prof. Tiiu Koff, Jaanus Terasmaa and Shinya Sugita for their valuable comments and discussion and Liisa Puusepp for help in the statistical analyses. The author is grateful to two anonymous referees for useful remarks that improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Galina Kapanen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kapanen, G. Pool of mobile and immobile phosphorus in sediments of the large, shallow Lake Peipsi over the last 100 years. Environ Monit Assess 184, 6749–6763 (2012). https://doi.org/10.1007/s10661-011-2455-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-2455-2

Keywords

Navigation