Skip to main content

Advertisement

Log in

Tidally driven N, P, Fe and Mn exchanges in salt marsh sediments of Tagus estuary (SW Europe)

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Short-sediment cores and flooding water were collected at 0, 5, 15, 25 and 50 min of tidal inundation in the two sites colonised by pure stands of Spartina maritima (low marsh) and Sarcocornia fruticosa (high marsh) from the Rosário salt marsh (Tagus estuary, SW Europe). Concentrations of NH +4 , NO 3  + NO 2 and HPO 2−4 , Fe and Mn were measured in tidal flooding water and pore water. Flooding water is enriched in nutrients, particularly ammonium due to local discharge of untreated urban effluents. Nevertheless, NH +4 and NO 3  + NO 2 concentrations in flooding waters at t = 5 min (NH +4  = 246 ± 7 μM, NO 3  + NO 2  = 138 ± 1 μM for S. fruticosa and NH +4  = 256 ± 8 μM, NO 3  + NO 2  = 138 ± 1 μM for S. maritima) rose sharply at both vegetated sites. An increase was also registered for HPO 2−4 and total dissolved Fe although the subsequent decrease was smoother. Advective transport induced by the two daily pulses of inundation is several orders of magnitude higher than the diffusive fluxes during submerged periods. In addition, solutes are exported from the sediment with the inundation and imported in submerged periods. The exported amount of inorganic nitrogen during tidal inundation (export of 3,200 μmol N m−2 day−1to the water column), is not counterbalanced by the sink of −290 μmol N m−2 day−1 occurred during the submerged period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allaway, W., Curran, M., Hollington, L., Ricketts, M., & Skelton, N. (2001). Gas space and oxygen exchange in roots of Avicennia marina (Forrsk.) Vierh. var. australasica (Walp.) ex N.C. Duke, the Grey Mangrove. Wetlands Ecology and Management, 9, 211–2001.

    Article  Google Scholar 

  • Aller, R. (1980). Diagenetic processes near the sediment-water interface of Long Island Sound. I Decomposition and nutrient element geochemistry (S, N, P). Advances in Geophysics, 22, 237–250.

    Article  CAS  Google Scholar 

  • Aller, R. (1994). The sedimentary Mn cycle in Long Island Sound, its role as intermediate oxidant and the influence of bioturbation, O2 and Corg flux on diagenetic reaction balances. Journal of Marine Research, 52, 259–295.

    Article  CAS  Google Scholar 

  • Andersen, F., & Ring, P. (1999). Comparison of phosphorus release from littoral and profundal sediments in a shallow eutrophic lake. Hydrobiologia, 408–409, 175–183.

    Article  Google Scholar 

  • Anderson, I., Tobias, C., Neikirk, B., & Wetzel, R. (1997). Development of a process-based nitrogen mass balance model for Virginia (USA) Spartina alterniflora salt marsh: implications for net DIN flux. Marine Ecology Progress Series, 29, 13–27.

    Article  Google Scholar 

  • Azzoni, R., Giordani, M., Bartoli, D., & Welsh, P. (2001). Iron, sulphur and phosphorus cycling in the rhizosphere sediments of an euthrophic Ruppia cirrhosa meadow (Valle Smarlacca, Italy). Journal of Sea Research, 45, 15–26.

    Article  CAS  Google Scholar 

  • Berner, R. (1980). Early diagenesis. A theoretical approach. USA: Princeton University Press.

    Google Scholar 

  • Breiner, J., Nidzieko, N., Monismith, S., Moore, W., & Paytan, A. (2009). Tidally regulated chemical fluxes across the sediment-water interface in Elkhorn Slough, California: evidence from a coupled geochemical and hydrodynamic approach. Limnology and Oceanography, 54, 1964–1980.

    Article  Google Scholar 

  • Brotas, V., Ferreira, A., Vale, C., & Catarino, F. (1990). Oxygen profiles in intertidal sediments of Ria Formosa (S. Portugal). Hydrobiologia, 207, 123–129.

    Article  CAS  Google Scholar 

  • Cabrita, T., (1997). Inorganic nitrogen dynamics in the Tagus estuary (Portugal). Ph.D. Thesis, University of Lisbon.

  • Cabrita, T., Catarino, F., & Vale, C. (1999). The effect of tidal range on the flushing of ammonium from intertidal sediments of the Tagus estuary, Portugal. Oceanologica Acta, 22, 291–302.

    Article  CAS  Google Scholar 

  • Caçador, I., Caetano, M., Duarte, B., & Vale, C. (2009). Stock and losses of trace elements from salt marsh plants. Marine Environmental Research, 67, 75–82.

    Article  Google Scholar 

  • Caetano, M., & Vale, C. (2002). Retention of arsenic and phosphorus in iron-rich concretions of Tagus salt marshes. Marine Chemistry, 79, 261–271.

    Article  CAS  Google Scholar 

  • Caetano, M., Madureira, M., Vale, C., Bebianno, M., & Gonçalves, M. (1995). Variations of Mn, Fe and S concentrations in sediment pore waters of Ria Formosa at different time scales. Netherlands Journal of Aquatic Ecology, 29, 275–281.

    Article  CAS  Google Scholar 

  • Caetano, M., Falcão, M., Vale, C., & Bebianno, M. (1997). Tidal flushing of ammonium, iron and manganese from inter-tidal sediment pore waters. Marine Chemistry, 58, 203–211.

    Article  CAS  Google Scholar 

  • Caetano, M., Fonseca, N., Cesário, R., & Vale, C. (2007). Mobility of Pb in salt marshes recorded by total content and stable isotopic signature. The Science of the Total Environment, 380, 84–92.

    Article  CAS  Google Scholar 

  • Caetano, M., Vale, C., Cesário, R., & Fonseca, N. (2008). Evidence for preferential depths of metal retention in roots of salt marsh plants. The Science of the Total Environment, 390, 466–474.

    Article  CAS  Google Scholar 

  • Canário, J., Caetano, M., Cesário, R., & Vale, C. (2007). Evidence for elevated production of MeHg in salt marshes. Environment Science Technology, 41, 7376–7382.

    Article  Google Scholar 

  • Cartaxana, P., & Lloyd, D. (1999). N2, N2O and O2 profiles in a Tagus estuary salt marsh. Estuarine, Coastal and Shelf Science, 48, 751–756.

    Article  CAS  Google Scholar 

  • Crespo, R., (1993). Cartografia do habitat potencial de Passeriformes no Estuário do Tejo por processamento digital de imagem. Degree Thesis FC – University of Lisbon, Lisbon.

  • Deborde, J., Anchultz, P., Auby, I., Glé, C., Commarieu, M.-V., Maurer, D., Lecroart, P., & Abril, G. (2008). Role of tidal pumping on nutrient cycling in a temperate lagoon (Arcachon Bay, France). Marine Chemistry, 109, 98–114.

    Article  CAS  Google Scholar 

  • Falcão, M., & Vale, C. (1995). Tidal flushing of ammonium from inter-tidal sediments of Ria Formosa, Portugal. Netherlands Journal of Aquatic Ecology, 29, 239–244.

    Article  Google Scholar 

  • Filippelli, M., (2002). The global phosphorous cycle. In, M. Kohn, J. Rakovan, J. Hughes (eds.), Phosphates, Geochemical, Geobiological and Materials Importance, Reviews in Mineralogy and Geochemistry, Washington D. C, 48, 391–425.

  • Froelich, P., Klinkhammer, G., Bender, M., Luedtke, N., Heath, G., Cullen, D., Dauphin, P., Hammond, D., Hartman, B., & Maynard, V. (1979). Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic, suboxic diagenesis. Geochimica et Cosmochimica Acta, 43, 1075–1091.

    Article  CAS  Google Scholar 

  • Graaf, A., Mulder, A., Bruijn, P., Jetten, M., Robertson, L., & Kuenen, J. (1995). Anaerobic oxidation of ammonium is a biologically mediated process. Applied and Environmental Microbiology, 61, 1256–1261.

    Google Scholar 

  • Gross, M., Hardisky, M., Wolf, P., & Klemas, V. (1991). Relationship between aboveground and belowground biomass of Spartina alterniflora (smooth cordgrass). Estuaries, 14, 180–191.

    Google Scholar 

  • Hansen, H., & Koroleff, F. (1999). Determination of nutrients. In K. Grasshoff, K. Kremling, & M. Ehrhardt (Eds.), Methods of seawater analysis (pp. 159–226). Weinheim: Wiley-VCH Verlag.

    Chapter  Google Scholar 

  • Hemond, H., Nuttle, W., Burke, R., & Stolzenbach, K. (1984). Surface infiltration in salt marshes, theory, measurement, and biogeochemical implications. Water Resources Research, 20, 591–600.

    Article  CAS  Google Scholar 

  • Howes, B., Howarth, R., Teal, J., & Valiela, I. (1981). Oxidation-reduction potentials in a salt marsh: spatial patterns and interactions with primary production. Limnology and Oceanography, 26, 350–360.

    Article  Google Scholar 

  • Huettel, M., Ziebis, W., Forster, S., & Luther, G. (1998). Advective transport affecting metal and nutrient distributions and interfacial fluxes in permeable sediments. Geochimica et Cosmochimica Acta, 62, 613–631.

    Article  CAS  Google Scholar 

  • Kerner, M., & Wallmann, K. (1992). Remobilization events involving Cd and Zn from intertidal flat sediments in the Elbe estuary during the tidal cycle. Estuarine, Coastal and Shelf Science, 35, 371–393.

    Article  CAS  Google Scholar 

  • Koretsky, C., Haveman, M., Cuellar, A., Beuving, L., Shattuck, T., & Wagner, M. (2008). Influence of Spartina and Juncus on saltmarsh sediments. I. Pore water geochemistry. Chemical Geology, 255, 87–99.

    Article  CAS  Google Scholar 

  • Li, Y., & Gregory, S. (1974). Diffusion of ions in sea water and in deep-sea sediments. Geochimica et Cosmochimica Acta, 38, 703–714.

    Article  CAS  Google Scholar 

  • Lillebø, A., Flindt, M., Pardal, M., & Marques, J. (2006). The effect of Zostera noltii, Spartina maritima and Scirpus maritimus on sediment pore-water profiles in a temperate intertidal estuary. Hydrobiologia, 555, 175–183.

    Article  Google Scholar 

  • Lovely, D., & Phillips, E. (1988). Manganese inhibition of microbial iron reduction in anaerobic sediments. Geomicrobiology Journal, 6, 145–155.

    Article  Google Scholar 

  • Mackin, J., & Aller, R. (1984). Ammonium adsorption in marine sediments. Limnology and Oceanography, 29, 250–257.

    Article  CAS  Google Scholar 

  • Meysman, F., Galaktionov, O., Glud, R., & Middelburg, J. (2010). Oxygen penetration around burrows and roots in aquatic sediments. Journal of Marine Research, 68, 309–336.

    Article  CAS  Google Scholar 

  • Mitsch, W., & Gosselink, J. (2000). Wetlands (p. 920). New York: John Wiley and Sons Inc.

    Google Scholar 

  • Osgood, D. (2000). Subsurface hydrology, nutrient export from barrier island marshes at different tidal ranges. Wetlands Ecology and Management, 8, 133–146.

    Article  CAS  Google Scholar 

  • Rocha, C. (1997). Rhythmic ammonium regeneration and flushing in intertidal sediments of the Sado estuary. Limnology and Oceanography, 43, 823–831.

    Article  Google Scholar 

  • Salgueiro, N., & Caçador, I. (2007). Short-term sedimentation in Tagus estuary, Portugal: the influence of salt marsh plants. Hydrobiologia, 587, 185–193.

    Article  Google Scholar 

  • Santos-Echeandía, J., Vale, C., Caetano, M., Pereira, P., & Prego, R. (2010). Effect of tidal flooding on metal distribution in pore waters of marsh sediments and its escape to water column (Tagus estuary, Portugal). Marine Environmental Research, 70, 358–367.

    Google Scholar 

  • Simas, T., & Ferreira, J. (2007). Nutrient enrichment and the role of salt marshes in the Tagus estuary (Portugal). Estuarine, Coastal and Shelf Science, 75, 393–407.

    Article  Google Scholar 

  • Slomp, C., (1997). Early diagenesis of phosphorus in continental margin sediments. Ph.D. Thesis, Landbouwuniversiteit Wageningen.

  • Sundby, B., Vale, C., Caetano, M., & Luther, G. (2003). Redox chemistry in the root zone of a salt marsh sediment in the Tagus estuary, Portugal. Aquatic Geochemistry, 9, 257–271.

    Article  CAS  Google Scholar 

  • Taillefert, M., Neuhuber, S., & Bristow, G. (2007). The effect of tidal forcing on biogeochemical processes in intertidal salt marsh sediments. Geochemical Transactions, 8, 6.

    Article  Google Scholar 

  • Weis, J., & Weis, P. (2004). Metal uptake, transport and release by wetland plants, implications for phytoremediation and restoration. Environmental International, 30, 685–700.

    Article  CAS  Google Scholar 

  • Wilson, A., & Gardner, L. (2006). Tidally driven groundwater flow and solute exchange in a marsh, numerical simulations. Water Resources Research, 42, 1–9.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the colleague Rute Cesário for the field work and technical assistance and Joana Raimundo for statistical analysis. Juan Santos-Echeandia thanks the Basque Government for the financial support (post-doctoral grant). This article is a contribution to the Spanish–Portuguese Actions of references 2007PT0021 and FCT/CSIC9/CSIC/08.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Caetano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caetano, M., Bernárdez, P., Santos-Echeandia, J. et al. Tidally driven N, P, Fe and Mn exchanges in salt marsh sediments of Tagus estuary (SW Europe). Environ Monit Assess 184, 6541–6552 (2012). https://doi.org/10.1007/s10661-011-2439-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-2439-2

Keywords

Navigation