Advertisement

Environmental Monitoring and Assessment

, Volume 184, Issue 9, pp 5415–5420 | Cite as

Comparative evaluation of some macro- and micro-element and heavy metal contents in commercial fruit juices

  • Mustafa Harmankaya
  • Sait Gezgin
  • Mehmet Musa ÖzcanEmail author
Article

Abstract

Micro- and macro-element contents of several commercial fruit juices purchased from marked were determined by inductively coupled plasma atomic emission spectroscopy. Among the minor elements determined, Zn, Cu, Mn, Mo, Co, Cd and Ni were found to be lover. Major mineral contents of fruit juices were established as Ca, K, Mg and P. The potassium contents of fruit juices were determined at the higher levels. K contents of fruit juices ranged between 475 mg/kg (B apricot) and 1478 mg/kg (B peach). In addition while Ca contents of fruit juices change between 19.3 mg/kg (E cherry) and 81.8 mg/kg (C orange), Mg contents ranged at the levels between 23.7 mg/kg (A apricot) and 65.4 mg/kg (D orange). Generally Ca and contents of peach, orange and apricot juices that belong to A and D companies were determined at the high levels.

Keywords

Fruit juice Minerals Heavy metals ICP-AES 

Notes

Acknowledgement

This work was supported by Selçuk University Scientific Research Project (S.U.-BAP Konya-Turkey).

References

  1. Arora, M., Kiran, B., Rani, Sh, & Rani, A. (2008). Heavy metal accumulation in vegetables irrigated with water from different sources. Food Chemistry, 111(4), 811–815.CrossRefGoogle Scholar
  2. Cautela, D., Pirrello, A. G., Esposito, Siano, F., & Castaldo, D. (2004). Determinazlone di metalli presenti in traccia in succhi di agrumi: chinotto ed arancia rossa. Ess Derivatives Agriculture, 74, 11–17.Google Scholar
  3. Cautela, D., Santelli, F., Boscaino, F., Laratta, B., Servillo, L., & Castaldo, D. (2009). Elemental content and nutritional study of blood orange juice. Journal of the Science of Food and Agriculture, 89, 2283–2291.CrossRefGoogle Scholar
  4. D'Mello, J. P. F. (2003). Food safety: contaminants and toxins (p. 480). Wallingford: CABI Publishing.CrossRefGoogle Scholar
  5. De Sio, F., Calmieri, A., Servillo, L., Giovane, A., & Castaldo, D. (2001). Thermoresistence of pectins methylesterase in sanguinello orange juice. Journal of Food Biochemistry, 24, 105–109.CrossRefGoogle Scholar
  6. Dragsted, I. O., Strube, M., & Larsen, J. C. (1993). Cancer protective factors in fruits and vegetables: biochemical and biological background. Pharmacology and Toxicology, 72(Suppl1), 116.Google Scholar
  7. Eckel, H., Roth, U., Döhler, H., Nicholson, F. & Unwin, R. (2005). Assessment and reduction of heavy metal trace metal input into agro-ecosystems. Final report of EU-concerted action. AROMİS. KTBL-Schrift 432. Darmstad, Germany: Kuratorium für Technik und Bauwesen in der Landwirtschaft e., 3,7843-2176.Google Scholar
  8. Farid, S. M., & Enani, M. A. (2010). Levels of trace elements in commercial fruit juices in Jeddah, Saudi Arabia. Medicine Journal Islamic World Academy Science, 18(1), 31–38.Google Scholar
  9. Gratani, L., & Varonea, L. (2008). Long-term monitoring of metal pollution by urban trees. Atmospheric Environment, 42(35), 8273–8277.CrossRefGoogle Scholar
  10. Health, H. B., & Reineccius, G. (1986). Flavouring materials of natural origin. Flavour chemistry and technology (pp. 244–248). Bronklin: Avi Publication Company Inc.Google Scholar
  11. Kellen, J. (2007). Fruit juice facts. www.fruitjuicefacts.org. Accessed 11 April 2011
  12. Krejpcio, Z., Sionkowski, S., & Bartela, J. (2005). Safety of fresh fruits and juices available on the Polish market as determined by heavy metal residues. Polish Journal of Environment Studies, 14(6), 877–881.Google Scholar
  13. Lugon-Moulin, N., Ryan, L., Donini, P., & Rossi, L. (2006). Cadmium content of phosphate fertilizers used for tobacco production. Agronomy Sustain Development, 26, 151–155.CrossRefGoogle Scholar
  14. Martin, G. J., Fournier, J. B., Allain, P., Mauras, Y., & Aguile, L. (1997). Optimization of analytical methods for origin assessment of orange juices: ICP-MS determination of trace and ultra-trace elements. Analusis, 25, 7–12.Google Scholar
  15. Nascentes, C. C., Arruda, M. A. Z., Nogueira, A. R. A., & Nobrega, J. A. (2004). Determination of Cu and Zn in fruit juices. Talanta, 64, 912–917.CrossRefGoogle Scholar
  16. Nnam, N. M., & Njoku, I. E. (2005). Production and evaluation of nutrient and sensory properties of juices made from citrus fruits. Nigerian Journal of Nutrition Science, 26(2), 62–66.Google Scholar
  17. Nogata, Y., Sakamoto, K., Shiratsuchi, H., Ishil, T., Yano, M., & Ohta, H. (2006). Flavonoid composition of fruit tissue of citrus species. Bioscience, Biotechnology, and Biochemistry, 70, 178–192.CrossRefGoogle Scholar
  18. Onianwa, P. C., Adetola, I. G., Iwegbue, C. M. A., Ojo, M. F., & Tella, O. O. (1999). Trace heavy metals composition of some Nigerian beverages and food drinks. Food Chemistry, 66, 275–279.CrossRefGoogle Scholar
  19. Püskülcü, H., & Ikiz, F. (1989). Introduction to statistic (p. 333). Izmir: Bilgehan Presss. in Turkish.Google Scholar
  20. Senesse, P., Meance, S., Cottet, V., Faivre, J., & Boutron-Ruault, M. C. (2004). High dietary iron and copper and risk of colorectal cancer: a case-control study in Burgundy. France Nutrition Cancer, 49, 66–71.CrossRefGoogle Scholar
  21. Simpkins, W. A., Louie, H., Wu, M., Harrison, M., & Goldberg, D. (2000). Trace elements in Australian orange juice and other products. Food Chemistry, 71, 423–433.CrossRefGoogle Scholar
  22. Skujins, S. (1998). Handbook for ICP-AES (Varian-Vista). A short guide to Vista Series ICP-AES Operation. Varian Int. AG Zug. Version 1.0. pp 29.Google Scholar
  23. Song, K., Cha, H., Park, S. H., & Lee, Y. I. (2003). Determination of trace cobalt in fruit samples by resonance ionization mass spectrometry. Microchemical Journal, 75, 87–96.CrossRefGoogle Scholar
  24. Wang, H., Cao, G., & Prior, R. L. (1996). Total antioxidant capacity of fruits. Journal of Agriculture Food Chemistry, 44, 701.CrossRefGoogle Scholar
  25. Zhuang, P., & McBride, M. B. (2009). Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Science of the Total Environment, 407, 1551–1561.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Mustafa Harmankaya
    • 1
  • Sait Gezgin
    • 1
  • Mehmet Musa Özcan
    • 2
    Email author
  1. 1.Department of Soil Science, Faculty of AgricultureUniversity of SelçukKonyaTurkey
  2. 2.Department of Food Engineering, Faculty of AgricultureUniversity of SelçukKonyaTurkey

Personalised recommendations