Environmental Monitoring and Assessment

, Volume 184, Issue 9, pp 5239–5254 | Cite as

Biogeochemistry of mercury and methylmercury in sediment cores from Sundarban mangrove wetland, India—a UNESCO World Heritage Site

  • Mousumi Chatterjee
  • João Canário
  • Santosh Kumar SarkarEmail author
  • Vasco Branco
  • Nallamuthu Godhantaraman
  • Bhaskar Deb Bhattacharya
  • Asokkumar Bhattacharya


This study was performed to elucidate the distribution, concentration trend and possible sources of total mercury (HgT) and methylmercury (MeHg) in sediment cores (<63 μm particle size; n = 75) of Sundarban mangrove wetland, northeastern part of the Bay of Bengal, India. Total mercury was determined by atomic absorption spectrometry (AAS) in a Leco AMA 254 instrument and MeHg by gas chromatography–atomic fluorescence spectrometry (GC-AFS). A wide range of variation in HgT (0.032–0.196 μg g−1 dry wt.) as well as MeHg (0.04–0.13 ng g−1 dry wt.) concentrations revealed a slight local contamination. The prevalent low HgT levels in sediments could be explained by sediment transport by the tidal Hugli (Ganges) River that would dilute the HgT values via sediment mixing processes. A broader variation of MeHg proportions (%) were also observed in samples suggesting that other environmental variables such as organic carbon and microbial activity may play a major role in the methylation process. An overall elevated concentration of HgT in surface layers (0–4 cm) of the core is due to remobilization of mercury from deeper sediments. Based on the index of geoaccumulation (I geo) and low effects-range (ER-L) values, it is considered that the sediment is less polluted by HgT and there is less ecotoxicological risk. The paper provides the first information of MeHg in sediments from this wetland environment and the authors strongly recommend further examination of HgT fluxes for the development of a detailed coastal MeHg model. This could provide more refine estimates of a total flux into the water column.


Mercury Methylmercury Sediment cores Ecotoxicological risk Sundarban mangrove wetland India 



The work was financially supported by two research projects bearing sanction numbers 09/028 (0776)/2010-EMR-I and 09/028(0738)/2009 -EMR-I funded by Council of Scientific and Industrial Research (CSIR). The authors Mousumi Chatterjee and Bhaskar Deb Bhattacharya are grateful to CSIR for awarding them Research Associateship and Senior Research Fellowship, respectively.


  1. Anderson, A. (1979). Mercury in soils. In J. O. Nriagu (Ed.), The biogeochemistry of mercury in the environment. Amsterdam: Elsevier.Google Scholar
  2. Bhattacharya, A. (2002). The role of macrofauna in the bioturbation processes around the mangrove zones of the Sunderban Biosphere Reserve and its impact on environment management. In J. K. Sharama, P. S. Esa, C. Mohan, & N. Sashidharan (Eds.), Biosphere reserves in India and their management. Ministry of Environment and Forests (pp. 166–180). New Delhi: G.O.I.Google Scholar
  3. Bhattacharya, A., & Sarkar, S. K. (2003). Impact of over exploitation of shellfish: Northeastern coast of India. Ambio, 32(1), 70–75.Google Scholar
  4. Bilinski, H., & Jusufi, S. (1980). Model studies of the solubility of inorganic mercury in the polluted coastal marine environment. Croatian Chemica Acta, 53, 93–99.Google Scholar
  5. Birkett, J. W., Noreng, J. M. K., & Lester, J. N. (2002). Spatial distribution of mercury in sediments and riparian environment of River Yare, Norfolk, U. K. Environmental Pollution, 116, 65–74.CrossRefGoogle Scholar
  6. Blackmore, G. (1998). An overview of trace metal pollution in the coastal waters of Hong Kong. Science of the Total Environment, 214, 21–48.Google Scholar
  7. Bloom, N. S., Gill, G. A., Cappellino, S., Dobbs, C., Mc Shea, L., & Driscoll, C. (1999). Speciation and cycling of mercury in Lavaca Bay, Texas, sediments. Environmental Science and Technology, 33, 7–13.CrossRefGoogle Scholar
  8. Bubb, J. M., Williams, T. P., & Lester, J. N. (1993). The behavior of mercury within a contaminated tidal river system. Water Science and Technology, 28, 329–338.Google Scholar
  9. Canário, J., Antunes, P., Lavrado, J., & Vale, C. (2004). Simple method for monomethylmercury determination in estuarine sediments. Trends in Analytical Chemistry, 23(10–11), 798–805.Google Scholar
  10. Canario, J., Vale, C., & Caetano, M. (2005). Distribution of monomethylmercury and mercury in surface sediments of the Tagus Estuary (Portugal). Marine Pollution Bulletin, 50, 1121–1145.CrossRefGoogle Scholar
  11. Canario, J., Vale, C., Caetano, M., & Madureira, M. J. (2003). Mercury in contaminated sediments and pore waters enriched in sulphate (Tagus Estuary, Portugal). Environmental Pollution, 126, 425–433.CrossRefGoogle Scholar
  12. Carreón-Martínez, L. B., Huerta-Diaz, M. A., Nava-Lopez, C., & Siqueiros-Valencia, A. (2002). Levels of reactive mercury and silver in sediments from the Port of Ensenada. Baja California, Mexico. Bulletin of Environmental Contamination and Toxicology, 68, 138–147.CrossRefGoogle Scholar
  13. Chatterjee, M., Canario, J., Sarkar, S. K., Branco, V., Bhattacharya, A., & Satpathy, K. K. (2009). Mercury enrichments in core sediments in Hugli–Matla–Bidyadhari estuarine complex, north-eastern part of the Bay of Bengal and their ecotoxicological significance. Environmental Geology, 57, 1125–1134.Google Scholar
  14. Chatterjee, M., Silva Filho, E. V., Sarkar, S. K., Sella, S. M., Bhattacharya, A., Satpathy, K. K., et al. (2007). Distribution and possible source of trace elements in the sediment cores of a tropical macrotidal estuary and their ecotoxicological significance. Environment International, 33, 346–356.CrossRefGoogle Scholar
  15. Chen, C. Y., Serrell, N., Evers, D. C., Fleishman, B. J., Lambert, K. F., Weiss, J., et al. (2008). Methylmercury in marine ecosystems: From sources to seafood consumers—a Workshop report. Environmental Health Perspectives. doi: 10.1289/ehp.1121.
  16. Chugh, R. S. (2009). Tides in Hooghly River. Hydrological Science Journal, 6, 10–26.Google Scholar
  17. Costley, T., Mossop, K. F., Dean, J. R., Garden, L. M., Marshall, J., & Carroll, J. (2000). Determination of mercury in environmental and biological samples using pyrolysis atomic absorption spectrometry. Atomic Absorption Newsletter, 14, 117–120.Google Scholar
  18. Din, Z. B. (1992). Use of aluminum to normalize heavy-metal data from estuarine and coastal sediments of Straits of Melaka. Marine Pollution Bulletin, 24, 484–491.CrossRefGoogle Scholar
  19. Ding, Z. H., Liu, J. L., Li, L. Q., Lin, H. N., Wu, H., & Hu, Z. Z. (2009). Distribution and speciation of mercury in surficial sediments from main mangrove wetlands in China. Marine Pollution Bulletin, 58, 1319–1325.Google Scholar
  20. Folk, R. L., & Ward, W. C. (1957). Brazos River bar, a study of the significance of grain size parameters. Journal of Sedimentary Petrology, 27, 3–26.Google Scholar
  21. Furukawa, Y., Bentley, S. J., Shiller, A. M., Lavoie, D. L., & Cappellen, P. V. (2000). The role of biologically-enhanced pore water transport in early diagenesis: An example from carbonate sediments in the vicinity of North Key Harbor, Dry Tortugas National Park, Florida. Journal of Marine Research, 58, 493–522.CrossRefGoogle Scholar
  22. Galloway, M. E., & Branfireun, B. A. (2004). Mercury dynamics of a temperate forest wetland. Science of the Total Environment, 325, 239–254.CrossRefGoogle Scholar
  23. Hall, B. D., Aiken, G. R., Krabbenhoft, D. P., Marvin-DiPasquale, M., & Swarzenski, C. M. (2008). Wetlands as principal zones of methylmercury production in southern Louisiana and the Gulf of Mexico region. Environmental Pollution, 154, 124–134.CrossRefGoogle Scholar
  24. Heyes, A., Mason, R. P., Kim, E., & Sunderland, E. (2005). Mercury methylation in estuaries: Insights from using measuring rates using stable mercury isotopes. Marine Chemistry, 102, 134–137.CrossRefGoogle Scholar
  25. Hungspreugs, M. (1988). Heavy metals and other non-oil pollutants in Southeast Asia. Ambio, 17, 178–182.Google Scholar
  26. Krumbein, W. C., & Pettijohn, F. J. (1938). Manual of sedimentary petrology (p. 549). New York: Plenum.Google Scholar
  27. Kwokal, Ž., Sarkar, S. K., Chatterjee, M., Frančišković-Bilinski, S., Bilinski, H., Bhattacharya, A., et al. (2008). An assessment of mercury loading in core sediments of Sunderban Mangrove Wetland, India (a preliminary report). Bulletin of Environmental Contamination and Toxicology, 81(1), 105–112.CrossRefGoogle Scholar
  28. Kwokal, Ž., Sarkar, S. K., Frančišković-Bilinski, SW., Bilinski, H., Bhattacharya, A., Bhattacharya, B.D., Chatterjee, M. (2012). Mercury concentration in sediment cores from Sundarban mangrove wetland, India, Soil and Sediment Contamination An International Journal, accepted 2012.Google Scholar
  29. Lai, T., & Qiu, S. (1998). A preliminary study on the mercury contents in sediments and macrobenthos of Yingluo Bay mangrove area, Guangxi. Journal of Guangxi Academy of Sciences, 14(4), 27–31.Google Scholar
  30. Liao, J. F. (1990). The chemical properties of the mangrove Solonchak in the northeast part of Hainan Island. The Acta Scientiarum Naturalium Universities Sunyatseni, 9, 67–72.Google Scholar
  31. Lin, P. (1997). Mangrove ecosystem in China (pp. 297–316). Beijing: Science.Google Scholar
  32. Lin, P., & Fu, Q. (1995). Environmental ecology and economy utilized of mangrove of China (pp. 1–3). Beijing: High Education Press.Google Scholar
  33. Lindstrom, M. (2001). Distribution of particulate and reactive mercury in surface waters of Swedish forest lakes—An empirically based predictive model. Ecological Modelling, 136, 81–93.CrossRefGoogle Scholar
  34. Linqvist, O., Johnsson, K., Bringmark, L., Timm, B., Aastrup, M., Andersson, A., et al. (1991). Mercury in the Swedish environment—Recent research on causes, consequences and corrective methods. Water, Air, and Soil Pollution, 55, 1–126.Google Scholar
  35. Liu, J. L., & Ding, Z. H. (2007). Progress in research on mercury methylation in environment. Earth and Environment, 35, 215–222 (In Chinese with English abstract).Google Scholar
  36. Liu, R. H., Wang, Q. C., Lv, X. G., Fang, F. M., & Hao, Q. J. (2003). The geochemical characteristic of mercury in Sanjiang Plain Marsh. Acta Scientiae Circumstantiae, 22, 661–663 (In Chinese with English abstract).Google Scholar
  37. Long, E. R., MacDonald, D. D., Smith, S. L., & Calder, F. D. (1995). Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environment Management, 19, 81–97.CrossRefGoogle Scholar
  38. MacDonald, D. D., Ingersol, C. G., & Berger, T. A. (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Achieves of Environmental Contamination and Toxicology, 39, 20–31.CrossRefGoogle Scholar
  39. Machado, W., Moscatelli, M., Rezende, L. G., & Lacerda, L. D. (2002). Mercury, zinc, and copper accumulation in mangrove sediments surrounding a large landfill in southeast Brazil. Environmental Pollution, 120, 455–461.CrossRefGoogle Scholar
  40. Muller, G. (1979). Schermetalle in den sedimenten des Rheins-Veranderungen seitt, 1971. Umschan, 79, 778–783.Google Scholar
  41. Nolting, R. F., Ramkema, A., & Everaarts, J. M. (1999). The geochemistry of Cu, Cd, Zn, Ni and Pb in sediment cores from the continental slope of Banc d’ Arquin (Mauritani). Continental Shelf Research, 19, 665–691.CrossRefGoogle Scholar
  42. Paterson, M. J., Rudd, J. W. M., & Louis, V. S. T. (1998). Increase of total and methylmercury in zooplankton following flooding of peat land reservoir. Environmental Science and Technology, 32, 3869–3874.CrossRefGoogle Scholar
  43. Rantala, R. T. T., & Loring, D. H. (1975). Multi-element analysis of silicate rocks and marine sediments by atomic absorption spectrophotometry. Atomic Absorption News, 14, 117–120.Google Scholar
  44. Rasmunssen, P. E. (1994). Current methods of estimating atmospheric mercury fluxes in remote areas. Environmental Science and Technology, 28, 2233–2241.CrossRefGoogle Scholar
  45. Sakamoto, H. (1985). The distribution of mercury, arsenic, and antimony in sediments of Kagoshima Bay. Bulletin of Chemical Society of Japan, 58, 580–587.Google Scholar
  46. Sanzgiry, S., Mesquita, A., & Kureishy, T. W. (1988). Total mercury in water, sediments, and animals along the Indian coast. Marine Pollution Bulletin, 19, 339–343.Google Scholar
  47. Sarkar, S. K., Frančišković-Bilinski, S., Bhattacharya, A., Saha, M., & Bilinski, H. (2004). Levels of elements in the surficial estuarine sediments of the Hugli river, northeast India and their environmental implications. Environment International, 30, 1089–1098.CrossRefGoogle Scholar
  48. Shaw, B. P., Sahu, A., Chaudhuri, S. B., & Panigrahi, A. K. (1988). Mercury in the Rushikulya River Estuary. Marine Pollution Bulletin, 19, 233–234.Google Scholar
  49. Silva, L. F. F., Machado, W., Lisboafilho, S. D., & Lacerda, L. D. (2003). Mercury accumulation in sediments of a mangrove ecosystem in SE Brazil. Water, Air, and Soil Pollution, 145, 67–77.CrossRefGoogle Scholar
  50. St. Louis, V. L., Rudd, J. W. M., Kelly, C. A., Beaty, K. G., Bloom, N. S., & Flett, R. J. (1994). Importance of wetlands as sources of methylmercury boreal forest ecosystem. Canadian Journal of Fisheries and Aquatic Sciences, 51, 1065–1076.CrossRefGoogle Scholar
  51. St. Louis, V. L., Rudd, J. W. M., Kelly, C. A., Beaty, K. G., Flett, R. J., & Roulet, N. T. (1996). Production and loss of methylmercury and loss of total mercury from boreal forest catchments containing different types of wetlands. Environment Science and Technology, 30, 2719–2729.CrossRefGoogle Scholar
  52. Stein, E. D., Cohen, Y., & Winer, A. M. (1996). Environmental distribution and transformation of mercury compounds. Critical Reviews in Environmental Science and Technology, 31, 241–293.Google Scholar
  53. Szefer, P., Kusak, A., Szefer, K., Glasby, G. P., Jankowska, H., Wolowicz, M., et al. (1998). Evaluation of anthropogenic influx of metallic pollutants into Puck Bay, Southern Baltic. Applied Geochemistry, 13, 293–304.CrossRefGoogle Scholar
  54. Turekian, K. K., & Wedephol, K. H. (1961). Distribution of the elements in some major units of the earth crust. Bulletin of Geological Society of America, 72, 175–192.CrossRefGoogle Scholar
  55. Valette-Silver, H. J. (1993). The use of sediment cores to reconstruct historical trends in contamination of estuarine and coastal sediments. Estuaries, 16(3B), 577–588.CrossRefGoogle Scholar
  56. Vicente-Beckett, V. A. (1992). Trace metal levels and speciation in sediments of some Philippine natural waters. Science of The Total Environment, 125, 345–357.Google Scholar
  57. Volpi, A. G., & Arizzi, A. N. (2001). A sperm cell toxicity test procedure for the Mediterranean species Paracentrotus lividus (Echinodermata: Echinoidea). Environmental Technology, 22, 439–445.CrossRefGoogle Scholar
  58. Walkey, A., & Black, T. A. (1934). An examination of the Dugtijaraff method for determining soil organic matter and proposed modification of the chronic and titration method. Soil Science, 37, 23–38.Google Scholar
  59. Wang, Q. C., Liu, R. H., Lv, X. G., & Li, Z. B. (2002). Progress of study on the mercury process in the wetland environment. Advance in Earth Sciences, 17, 881–885 (In Chinese with English abstract).Google Scholar
  60. Windom, H., Schropp, S., Calder, F., Ryan, J., Smith, R., Burney, L., et al. (1989). Natural trace metal concentrations in estuarine and coastal marine sediments of the southeastern United States. Environmental Science and Technology, 23, 314–320.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Mousumi Chatterjee
    • 1
  • João Canário
    • 2
  • Santosh Kumar Sarkar
    • 1
    Email author
  • Vasco Branco
    • 2
  • Nallamuthu Godhantaraman
    • 3
  • Bhaskar Deb Bhattacharya
    • 1
  • Asokkumar Bhattacharya
    • 1
  1. 1.Department of Marine ScienceUniversity of CalcuttaCalcuttaIndia
  2. 2.IPIMAR/INRB IPLisbonPortugal
  3. 3.Academic Staff CollegeUniversity of MadrasChennaiIndia

Personalised recommendations