Advertisement

Environmental Monitoring and Assessment

, Volume 184, Issue 5, pp 3141–3151 | Cite as

Heavy metals in the liver and muscle of Micropogonias manni fish from Budi Lake, Araucania Region, Chile: potential risk for humans

  • Jaime Tapia
  • Luis Vargas-Chacoff
  • Carlos Bertrán
  • Fernando Peña-Cortés
  • Enrique Hauenstein
  • Roberto Schlatter
  • Claudio Jiménez
  • Carolina Tapia
Article

Abstract

The concentrations of cadmium, lead, manganese and zinc were determined in the fish species Micropogonias manni captured in Budi Lake, Araucanía Region (Chile). The measurements were made by atomic absorption spectroscopy, and the analysis considered the sex, weight and size of the species; the representative samples were taken from the liver and muscle tissue. The method was validated using certified reference material (DOLT-1). The ranges of concentrations found in the muscle tissue were: Cd, not determinate (n.d.)–0.26; Pb, n.d.–1.88; Mn, 0.02–12.17 and Zn, 0.48–39.04 mg kg−1 (dry weight). The concentrations in muscle tissue were generally lower than those found in the liver. With respect to the average concentrations recorded for each metal in the edible part of the fish (muscle tissue), it was found that the levels of Cd, Pb, Mn and Zn are within the ranges published by other authors in similar works and below the maximum concentration limits permitted by current legislation (FAO/WHO 2004; EU 2001) and do not constitute a health hazard for consumers of this species. The results were subjected to statistical analysis to evaluate the correlations between the content of the various metals and the sex, weight and size of each sample.

Keywords

Atomic absorption spectrometry Budi Lake Fish Heavy Metals 

Notes

Acknowledgements

Study carried out in the framework of FONDECYT Project 1080317 and 1110798. The authors are also grateful to the Environmental Chemistry Laboratory belonging to the Institute of Chemistry of Natural Resources, University of Talca, Chile.

Conflicts of interest

The authors declare that there are no conflicts of interest.

References

  1. Alam, M. G. M., Tanaka, A., Allison, G., Laureson, L. J. B., Stagnitti, F., & Snow, E. T. (2002). A comparison of trace element concentration in cultured and wild carp (Cyprinus carpio) of lake Kasumigaura, Japan. Ecotoxicology Environment Safety, 53, 348–354.CrossRefGoogle Scholar
  2. Begum, A., Amin, Md. N., Kaneco, S., & Ohta, K. (2005). Selected elemental composition of the muscle tissue of three species of fish, Tilapia nilotica, Cirrhina mrigala and Clarius batrachus, from fresh water Dhanmondi Lake in Bangladesh. Food Chemistry, 93, 439–443.CrossRefGoogle Scholar
  3. Bertrán, C., Vargas-Chacoff, L., Peña-Cortés, F., Mulsow, S., Tapia, J., Hauenstein, E., et al. (2006). Benthic macrofauna of three saline lake wetlands on the coastal rim of southern Chile. Cienc Mar, 32, 589–596.Google Scholar
  4. Bertrán, C., Vargas-Chacoff, L., Peña-Cortés, F., Schlatter, R., Tapia, J., & Hauenstein, E. (2010). Distribución de la macrofauna bentónica en el lago costero Budi, Sur de Chile. Review on Biological Marine Oceanography, 45, 235–243.Google Scholar
  5. Canli, M., & Atli, G. (2003). The relationships between heavy metal (Cd, Cr, Cu, Fe, Pb, Zn) levels and the size of six Mediterranean fish species. Environmental Pollution, 121, 129–136.CrossRefGoogle Scholar
  6. Celik, U., & Oehlenschläger, J. (2004). Determination of zinc and copper in fish samples collected from Northeast Atlantic by DPSAV. Food Chemistry, 87, 343–347.CrossRefGoogle Scholar
  7. Chiang, J. (1998). Contaminación del mar y el futuro de la pesca en Chile. Rev Amb Desar, 4, 67–72.Google Scholar
  8. Dural, M., Göksu, M. Z. L., & Özak, A. A. (2007). Investigation of heavy metal levels in economically important fish species captured from the Tuzla lagoon. Food Chemistry, 102, 415–421.CrossRefGoogle Scholar
  9. Eisler, R., (1988). Zinc hazards to fish, wildlife and invertebrates: a synoptic review. US Fish Wildlife Service Biology of Reproduction, 85.Google Scholar
  10. EU (2001). Commission regulation as regards heavy metals, Directive 2001/22/EC, No: 466/2001Google Scholar
  11. Evans, D. W., Doo, D. K. D., & Hanson, P. (1993). Trace element concentration in fish livers: implication of variations with fish size in pollution monitoring. Marine Pollution Bulletin, 26, 329–354.CrossRefGoogle Scholar
  12. FAO (2005). Statistic division, food security statistic, food consumption. http://www.fao.org/es/ESS/faotast/foodsecurity/index.en.htm. Accessed October 2010.
  13. FAO/WHO (2004). Summary of evaluations performed by the Joint FAO/WHO Expert Committee on Food Additives (JECFA 1956–2003) (First through sixty-first meetings). Washington, DC: ILSI Press International Life Sciences Institute.Google Scholar
  14. Forstner, U., & Wittman, G. T. W. (1981). Metal pollution in the aquatic environment. Berlin: Springer Verlag.Google Scholar
  15. Galindo, L., Hardisson, A., & Montelongo, F. G. (1986). Correlation between lead, cadmium, copper, zinc and iron concentrations in frozen tuna fish. Bulletin of Environmental Contamination and Toxicology, 36, 595–599.CrossRefGoogle Scholar
  16. Gobert, S., Daemers-Lambert, C., & Bouquegneau, J. M. (1992). Etat physiologique et contamination en Metaux Lourds des Moules Mytilus edulis Sur La Cote Belge. Bulletin Society of Royal Science Liège Proc. Royal Society, 61, 177–194.Google Scholar
  17. Hadson, P. V. (1988). The effect of metabolism on uptake, disposition and toxicity in fish. Aquatic Toxicology, 11, 3–18.CrossRefGoogle Scholar
  18. Harrison, S. E., & Klaverkamp, J. F. (1990). Metal contamination in liver and muscle of northern pike (Esox lucius) and white sucker (Castomus commersoni) and in sediments from lake near smelter at Flin Flon, Manitoba. Environmental Toxicology and Chemistry, 9, 941–956.Google Scholar
  19. Henry, F., Amara, R., Coucort, L., Lacouture, D., & Bertho, M.-L. (2004). Heavy metals in four fish species from the French coast of the Eastern English Channel and Southern Bight of the North Sea. Environment International, 30, 675–683.CrossRefGoogle Scholar
  20. Lizana, C., (2005). Estudio de metales tóxicos en sedimentos del borde costero de la IX Región, Chile. Tesis de Grado de Tecnología Médica. Facultad de Ciencias de la Salud, Universidad de Talca, Talca, Chile.Google Scholar
  21. López-Galindo, C., Vargas-Chacoff, L., Nebot, E., Casanueva, J. F., Rubio, D., Solé, M., et al. (2010a). Biomarker responses in Solea senegalensis exposed to sodium hypochlorite used as antifouling. Chemosphere, 78, 885–893.CrossRefGoogle Scholar
  22. López-Galindo, C., Vargas-Chacoff, L., Nebot, E., Casanueva, J. F., Rubio, D., Solé, M., et al. (2010b). Sublethal effects of the organic antifoulant Mexel®432 in the flatfish Solea senegalensis. Chemosphere, 79, 78–85.CrossRefGoogle Scholar
  23. Mansour, S. A., & Sidky, M. M. (2002). Ecotoxicological studies. 3. Heavy metals contaminating water and fish from Fayoum Governorate, Egypt. Food Chemistry, 78, 15–22.CrossRefGoogle Scholar
  24. Marcovecchio, J. E. (2004). The use of Micropogonias furnieri and Mugil liza as bioindicators of heavy metals pollution in La Plata river estuary, Argentina. Science of the Total Environment, 323, 219–226.CrossRefGoogle Scholar
  25. Matta, J., Milad, M., Manger, R., & Tosteson, T. (1999). Heavy metals, lipid peroxidation, and cigateratoxicity in the liver of the Caribbean barracuda (Sphyraena barracuda). Biological Trace Element Research, 70, 69–79.CrossRefGoogle Scholar
  26. National Academy of Sciences. (1980). Recommended dietary allowances (9th ed.). Washington: NAS.Google Scholar
  27. Nimmo, D. R., Willox, M. J., Lafrancois, T. D., Chapman, P. L., Brinkman, S. F., & Grene, J. C. (1998). Effects of metal mining and milling on boundary waters of Yellowstone National Park, USA. Environmental Management, 22, 913–926.CrossRefGoogle Scholar
  28. Peña-Cortés, F., Rebolledo, G., Hermosilla, K., Hauenstein, E., Bertrán, C., Schlatter, R., et al. (2006). Dinámica del paisaje para el período 1980–2004 en la cuenca costera del Río-Lago Budi, Chile. Consideraciones para la conservación de sus humedales. Review of Ecology Australia, 16, 183–196.Google Scholar
  29. Sivaperumal, P., Sankar, T., Viswanathan, V., & Nair, P. G. (2007). Heavy metal concentrations in fish, shellfish and fish products from internal markets of India vis-a-vis international standards. Food Chemistry, 102, 612–620.CrossRefGoogle Scholar
  30. Stuardo, J., Valdovinos, C., & Dellarosa, V. (1989). Caracterización General del Lago Budi: Una Laguna Costera Salobre de Chile Central. CONA, 13, 57–69.Google Scholar
  31. Tapia, J., Duran, E., Peña-Cortés, F., Hauenstein, E., Bertrán, C., Schlatter, R., et al. (2006). Micropogonias manni as a bioindicador for copper in lake Budi (IX Región Chile). Journal of the Chilean Chemical Society, 51, 901–904.CrossRefGoogle Scholar
  32. Tapia, J., Bertrán, C., Astudillo, M. J., Vargas-Chacoff, L., Carrasco, G., Valderrama, A., et al. (2009). Study of copper, chromium and lead contents in Mugil cephalus and Eleginops maclovinus species taken in the mouths of Maule and Mataquito rivers (VII region, Chile). Journal of the Chilean Chemical Society, 54, 36–39.CrossRefGoogle Scholar
  33. Tapia, J., Vargas-Chacoff, L., Bertrán, C., Torres, F., Pinto, R., Urzúa, S., et al. (2010). Study of the content cadmium, chromium and lead in bivalve molluscs of the Pacific Ocean (Maule Region, Chile). Food Chemistry, 121, 666–671.CrossRefGoogle Scholar
  34. Topcuoglu, S., Kırbasoglu, C., & Gungor, N. (2002). Heavy metals in organisms and sediments from the Turkish Coast of the Black Sea. Environment International, 1069, 1–8.Google Scholar
  35. Türkmen, A., Türkmen, M., Tepe, Y., & Akyurt, I. (2005). Heavy metals in three commercially valuable fish species from Iskenderum Bay, Northern East Mediterranean Sea, Turkey. Food Chemistry, 91, 167–172.CrossRefGoogle Scholar
  36. Tüzen, M. (2003). Determination of heavy metals in fish samples of the middle Black Sea (Turkey) by graphite furnace atomic absorption spectrometry. Food Chemistry, 80, 119–123.CrossRefGoogle Scholar
  37. WHO. (1989). Evaluation of certain food additives and contaminants (thirty-third report of the Joint FAO/WHO Expert Committee on Food Additives). WHO Technical Report Series No. 776. Geneva: World Health Organization.Google Scholar
  38. WHO. (1993). Toxicological evaluation of certain food additives and contaminants. Cambridge: Cambridge University Press.Google Scholar
  39. WHO. (1994). Quality directive of potable water (2nd ed., p. 197). Geneva: World Health Organization.Google Scholar
  40. Yilmaz, F., Özdemir, N., Demirak, A., & Tuna, A. L. (2007). Heavy metal levels in two fish species Leuciscus cephalus and Lepomis gibbosus. Food Chemistry, 100, 830–835.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Jaime Tapia
    • 1
  • Luis Vargas-Chacoff
    • 2
  • Carlos Bertrán
    • 2
  • Fernando Peña-Cortés
    • 3
  • Enrique Hauenstein
    • 3
  • Roberto Schlatter
    • 2
  • Claudio Jiménez
    • 2
  • Carolina Tapia
    • 4
  1. 1.Institute of Natural Resources ChemistryUniversidad de TalcaTalcaChile
  2. 2.Institute of Marine Science and Limnology, Science FacultyUniversidad Austral de ChileValdiviaChile
  3. 3.Faculty of Natural ResourcesUniversidad Católica de TemucoTemucoChile
  4. 4.Technology University of ChileConcepción-TalcahuanoChile

Personalised recommendations