Skip to main content

Advertisement

Log in

Detection of microcystins in Pamvotis lake water and assessment of cyanobacterial bloom toxicity

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Lake Pamvotis is a shallow, eutrophic Mediterranean lake with ecological significance. This paper deals with the evaluation of cyanobacterial toxicity in Lake Pamvotis. ELISA and HPLC revealed the presence of significant amounts of MCYST-LR. Danio rerio bioassay confirmed the toxic nature of the bloom. Cyanobacterial extracts had adverse toxic effects on development of D. rerio. Also, it was shown that cyanobacterial extracts containing environmentally detected concentrations of MCYST can cause reduced survival rate of fish species. The results clearly indicate that cyanobacterial blooms in Lake Pamvotis may be regarded as human and fish health hazard. Continuous monitoring of the lake is suggested, in order to prevent future possible intoxications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Albanis, T., Pomonis, P., & Sdoukos, A. (1986). Seasonal fluctuations of organochlorine and triazines pesticides in the aquatic system of Ioannina basin (Greece). The Science of the Total Environment, 58, 243–253.

    Article  CAS  Google Scholar 

  • Albay, M., Akcaalan, R., Tufekci, H., Metcalf, J., Beattie, K., & Codd, G. (2003). Depth profiles of cyanobacterial hepatotoxins (microcystins) in three Turkish freshwater lakes. Hydrobiologia, 505, 89–95.

    Article  Google Scholar 

  • Anagnostidis, K., & Economou-Amilli, A. (1980). Limnological studies on Lake Pamvotis (Ioannina), Greece I. Hydroclimatology, phytoplankton–periphyton with special reference to the valence of some microorganisms from sulphureta as bioindicators. Archives of Hydrobiology, 89, 313–342.

    Google Scholar 

  • Andersen, R. J., Luu, H. A., Chen, D. Z. X., Holmes, C. F. B., Kent, M. L., Le Blanc, M., et al. (1993). Chemical and biological evidence links microcystins to salmon ‘netpen liver disease’. Toxicon, 31, 1315–1323.

    Article  CAS  Google Scholar 

  • Beresovsky, D., Hadas, O., Livne, A., Sukenik, A., Kaplan, A., & Carmeli, S. (2006). Toxins and biologically active secondary metabolites of Microcystis sp., isolated from Lake Kinneret, Israel. Journal of Chemistry, 46, 79–87.

    CAS  Google Scholar 

  • Berry, J. P., Gantar, M., Gibbs, P. D., & Schmale, M. C. (2007). The zebrafish (Danio rerio) embryo as a model system for identification and characterization of developmental toxins from marine and freshwater microalgae. Comparative Biochemistry and Physiology. C, 145, 61–72.

    Google Scholar 

  • Carmichael, W. W. (1997). The cyanotoxins. Advances in Botanical Research, 27, 211–255 (Academic Press Ltd.).

    Article  CAS  Google Scholar 

  • Chorus, I. (2001). Cyanotoxins, occurrence, causes, consequences. Berlin: Springer.

    Google Scholar 

  • Chorus, I., & Bartram, J. (Eds.) (1999). Toxic cyanobacteria in water. A guide to public health consequences, monitoring and management (p. 416). London: E & FN Spon, WHO.

    Google Scholar 

  • Codd, G. A. (2000). Cyanobacterial toxin, the perception of water quality, and the prioritisation if eutrophication control. Ecological Engineering, 16, 51–60.

    Article  Google Scholar 

  • Codd, G. A., Lindsay, J., Young, F. M., Morrison, L. F., & Metcalf, J. S. (2005). Cyanobacterial toxins. In J. Huisman, H. C. P. Matthijs, & P. M. Visser (Eds.), Harmful cyanobacteria (pp. 11–23). Dordrecht: Springer.

    Google Scholar 

  • Cook, C., Vardaka, E., & Lanaras, T. (2004). Toxic cyanobacteria in Greek freshwaters, 1997–2000: Occurrence, toxicity and impacts in the Mediterranean region. Acta Hydrochimica et Hydrobiologica, 32, 107–124.

    Article  CAS  Google Scholar 

  • Dor, I., & Danin, A. (1996). Cyanobacterial desert crusts in the Dead Sea Valley. Israel Algeme Study, 83, 197–206.

    Google Scholar 

  • Douma, M., Ouahid, Y., del Campo, F. F., Loudiki, M., Mouhri, Kh, & Oudra, B. (2010). Identification and quantification of cyanobacterial toxins (microcystins) in two Moroccan drinking-water reservoirs (Mansour Eddahbi, Almassira). Environmental Monitoring and Assessment, 160, 439–450.

    Article  CAS  Google Scholar 

  • El Ghazali, I., Saqrane, S., Carvalho, A. P., Ouahid, Y., Oudra, B., Del Campo, F. F., et al. (2009). Compensatory growth induced in zebrafish larvae after pre exposure to a Microcystis aeruginosa natural bloom extract containing microcystins. International Journal of Molecular Sciences, 10, 133–146.

    Article  Google Scholar 

  • Feuillade, M., Jann-Para, G., & Feuillade, J. (1996). Toxic compounds to Artemia from blooms and isolates of the cyanobacterium Planktothrix rubescens. Archives of Hydrobiology, 138, 175–186.

    Google Scholar 

  • Fischer, W., & Dietrich, D. (2000). Pathological and biochemical characterization of MC-induced hepatopancreas and kidney damage in carp (Cyprinus carpio). Toxicology and Applied Pharmacology, 164, 73–81.

    Article  CAS  Google Scholar 

  • Fischer, W. J., Garthwaite, I., Miles, C. O., Ross, K. M., Aggen, J. B., Chamberlin, A. R., et al. (2001). Congener independent immunoassay for microcystins and nodularins. Environmental Science and Technology, 35, 4849–4856.

    Article  CAS  Google Scholar 

  • Frogley, M. R., Griffiths, H. I., & Heaton, T. H. E. (2001). Historical biogeography and Late Quaternary environmental change of Lake Pamvotis, Ioannina (north-western Greece): Evidence from ostracods. Journal of Biogeography, 28, 745–756.

    Article  Google Scholar 

  • Gkelis, S., Harjunpa, V., Lanaras, T., & Sivonen, K. (2005). Diversity of hepatotoxic microcystins and bioactive anabaenopeptins in cyanobacterial blooms from Greek freshwaters. Environmental Toxicology, 20(3), 249–256.

    Article  CAS  Google Scholar 

  • Hans, P. W., & Huisman, J. (2008). Blooms like it hot. Science, 320(5872), 57–58.

    Article  Google Scholar 

  • Hawkins, P. R., Novic, S., Cox, P., Neilan, B. A., Burns, B. P., Shaw, G., et al. (2005). A review of analytical methods for assessing the public health risk from microcystin in the aquatic environment. Journal of Water Supply: Research and Technology—Aqua, 54, 509–518.

    CAS  Google Scholar 

  • Huisman, J., Matthijs, H. C. P., & Visser, P. (2005). Harmful cyanobacteria. Aquatic Ecology Series, Springer.

  • Kagalou, I., Papadimitriou, T., Bacopoulos, V., & Leonardos, I. (2008). Assessment of microcystins in lake water and the omnivorous fish (Carassius gibelio, Bloch) in Lake Pamvotis (Greece) containing dense cyanobacterial bloom. Environmental Monitoring and Assessment, 137, 185–195.

    Article  CAS  Google Scholar 

  • Kagalou, I., Papastergiadou, E., Tsimarakis, G., & Petridis, D. (2003). Evaluation of the trophic state of Lake Pamvotis Greece, a shallow urban Lake. Hydrobiologia, 506–509, 745–752.

    Article  Google Scholar 

  • Kagalou, I., Tsimarakis, G., & Patsias, A. (2001). Phytoplankton dynamic and physicochemical features in Lake Pamvotis. Fresenius Environmental Bulletin, 10, 845–849.

    CAS  Google Scholar 

  • Keil, C., Forchert, A., Fastner, J., Szewzyk, U., Chorus, I., & Krätke, R. (2002). Toxicity and microcystin content of extracts from a Planktothrix bloom and two laboratory strains. Water Research, 36, 2133–2139.

    Article  CAS  Google Scholar 

  • Kotti, M., Vlessidis, A., & Evmiridis, N. (2000). Determination of phosphorous and nitrogen in the sediment of Lake Pamvotis (Greece). International Journal of Environmental Analytical Chemistry, 78(3–4), 455–467.

    Article  CAS  Google Scholar 

  • Lawton, L. A., Edwards, C., & Codd, G. A. (1994). Extraction and high-performance liquid chromatographic method for the determination of microcystins in raw and treated waters. Analyst, 119, 1525–1530.

    Article  CAS  Google Scholar 

  • Malbrouck, C., & Kestemont, P. (2006). Effects of microcystins on fish. Environmental Toxicology and Chemistry, 25, 72–86.

    Article  CAS  Google Scholar 

  • Meriluoto, J., Lawton, L., & Harada, K.-I. (2000). Isolation and detection of microcystins and nodularins, cyanobacterial peptide hepatotoxins. In O. Holst (Ed.), Bacterial toxins: Methods and protocols (pp. 65–87). Totowa, NJ: Humana.

    Google Scholar 

  • Meriluoto, J. A., & Spoof, L. E. (2008). Cyanotoxins: sampling, sample processing and toxin uptake. Advances in Experimental Medicine and Biology, 619, 483–499.

    Article  CAS  Google Scholar 

  • Oberemm, A., Becker, J., Codd, G. A., & Steinberg, C. (1999). Effects of cyanobacterial toxins and aqueous crude extracts of cyanobacteria on the development of fish and amphibians. Environmental Toxicology, 14, 77–88.

    Article  CAS  Google Scholar 

  • Papadimitriou, T., Kagalou, I., Bacopoulos, V., & Leonardos, I. (2010). Accumulation of microcystins in water and fish tissues: An estimation of risks associated with microcystins in most of the Greek lakes. Environmental Toxicology, 25(4), 418–427.

    Article  CAS  Google Scholar 

  • Pearl, H. W., Fulton, R. S., Moisander, P. H., & Dyble, J. (2001). Harmful freshwater algal blooms, with an emphasis on cyanobacteria. Science World Journal, 1, 76–113.

    Google Scholar 

  • Pietsch, C., Wiegand, C., Ame, M. V., Nicklisch, A., Wunderlin, D., & Pflugmacher, S. (2001). The effects of a cyanobacterial crude extract on different aquatic organisms: Evidence for cyanobacterial toxin modulating factors. Environmental Toxicology, 16, 535–542.

    Article  CAS  Google Scholar 

  • Sivonen, K., & Jones, G. J. (1999). Cyanobacterial toxins. In I. Chorus & J. Bartram (Eds.), Toxic cyanobacteria in water (pp. 41–111). London: E & FN Spon.

    Google Scholar 

  • Stalikas, C., Pilidis, G., & Karayannis, M. (1994). Heavy metal concentrations in sediments of Lake Pamvotis and Kalamas River in North-Western Greece. Fresenius Environmental Bulletin, 3, 575–579.

    CAS  Google Scholar 

  • Ueno, Y., Nagata, S., Tsutsumi, T., Hasegawa, A., Watanabe, M. F., Park, H. D., et al. (1996). Detection of microcystin, a blue-green algal hepatotoxin, in drinking water sampled in Haimen and Fusui, endemic areas of primary liver cancer in China, by highly sensitive immunoassay. Carcinogenesis, 17(6), 1317–1321.

    Article  CAS  Google Scholar 

  • Uterhmole, H. (1958). Zur vervollkommnung der quantitativen phytoplakton-methodik. Mitteilungen, Internationale Vereinigung feur Theortische und Angewandte Limnologie, 9, 1–38.

    Google Scholar 

  • Vardaka, E., Moustaka-Gouni, M., Cook, C. M., & Lanaras, T. (2005). Cyanobacterial blooms and water quality in Greek waterbodies. Journal of Applied Phycology, 17, 391–401.

    Article  Google Scholar 

  • Vareli, K., Briasoulis, E., Pilidis, G., & Sainis, I. (2009). Molecular confirmation of Planktothrix rubescens as the cause of intense, microcystin—Synthesizing cyanobacterial bloom in Lake Ziros, Greece. Harmful Algae, 8(3), 447–453.

    Article  CAS  Google Scholar 

  • Vasconcelos, V. M., Sivonen, K., Evans, W. R., Carmichael, W. W., & Namikoshi, M. (1996). Microcystin (heptapeptide hepatotoxins) diversity in cyanobacterial blooms collected in Portuguese fresh waters. Water Research, 30, 2377–2384.

    Article  CAS  Google Scholar 

  • Wadhia, K., & Thompson, K. C. (2007). Low-cost ecotoxicity testing of environmental samples using microbiotests for potential implementation of the water framework directive. Trends in Analytical Chemistry, 26, 300–307.

    Article  CAS  Google Scholar 

  • WHO (2003). Algae and cyanobacteria in fresh water. In Guidelines for safe recreational water environments (Vol. 1: Coastal and fresh waters, pp. 136–158). Geneva, Switzerland: World Health Organization.

    Google Scholar 

Download references

Acknowledgements

We would like to thank the editor of the journal and the anonymous reviewer for their helpful comments on the improvement of the present paper. Also, we would like to thank Ms. Kademoglou Katerina for her help in the English language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis D. Leonardos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papadimitriou, T., Armeni, E., Stalikas, C.D. et al. Detection of microcystins in Pamvotis lake water and assessment of cyanobacterial bloom toxicity. Environ Monit Assess 184, 3043–3052 (2012). https://doi.org/10.1007/s10661-011-2169-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-2169-5

Keywords