Environmental Monitoring and Assessment

, Volume 184, Issue 5, pp 3027–3042 | Cite as

Metal speciation studies in the aquifer sediments of Semria Ojhapatti, Bhojpur District, Bihar

  • Alok Kumar
  • A. L. Ramanathan
  • Shashi Prabha
  • Rajesh Kumar Ranjan
  • Shyam Ranjan
  • Gurmeet Singh
Article

Abstract

The pollution of aquifer sediments by heavy metals has assumed serious concern due to their toxicity and accumulative behavior. Changes in environmental conditions can strongly influence the behavior of both essential and toxic elements by altering the forms in which they occur and therefore quantification of the different forms of metal is more meaningful than total metal concentrations. In this study, fractionation of metal ions in aquifer sediments of Semria Ojhapatti area, Bhojpur district, Bihar has been studied to determine the ecotoxic potential of metal ions. The investigations suggest that iron, copper, and arsenic have a tendency to remain associated in the following order residual > reducible > acid-soluble > oxidizable; manganese and zinc have tendency to be associated as residual > acid-soluble > reducible > oxidizable. The risk assessment code reveals that manganese and zinc occur in significant concentration in acid-soluble fraction and therefore comes under the high risk category and can easily enter the food chain. Most of the iron, copper, and arsenic occur as immobile fraction (i.e. residual) followed by its presence in reducible fraction and would pose threat to the water quality due to changing redox conditions. The metal enrichment factor in the study area shows moderate to significant metal enrichment in the aquifer sediments which may pose a real threat in near future. The geo-accumulation index of metals also shows that the metals lie in the range of strongly contaminated (for iron at shallow depths) to moderately contaminated to uncontaminated values.

Keywords

Aquifer Sediments Metal fractionation Risk assessment code Enrichment factor 

References

  1. Acharyya, S. K. (2004). Arsenic levels in groundwater from quaternary alluvium in the Ganga plain and the Bengal basin, Indian subcontinent: Insights into influence of stratigraph. Gondwana Research, 8(1), 55–66.CrossRefGoogle Scholar
  2. Ansari, A. A., Singh, I. B. & Tobschall, H. J. (2000). Importance of geomorphology and sedimentation process for metal dispersion in sediments and soils of the Ganga plain: Identification of geochemical domains. Chemical Geology, 162(3–4), 245–266.CrossRefGoogle Scholar
  3. Bengtsson, L., & Enell, M. (1986). Chemical analysis. In B. E. Berglund (Ed.), Handbook of holocene palaeoecology and palaeohydrology (pp. 423–451). Wiley: Chichester.Google Scholar
  4. Borovec, Z., Tolar, V., & Mraz, L. (1993). Distribution of some metals in sediments of the central part of the Labe (Elbe) River, Czech Republic. Ambio, 22(4), 200–205.Google Scholar
  5. Brady, W. D., Eick, M. J., Grossl, P. R., & Brady, P. V. (2003). A site-specific approach for the evaluation of natural attenuation at metals-impacted sites. Soil and Sediment Contamination, 12(4), 541–564.CrossRefGoogle Scholar
  6. Bruder-Hubscher, V., Lagarde, F., Leroy, M. J. F., Coughanowr, C., & Enguehard, F. (2002). Application of sequential extraction procedure to study the release of elements from municipal solid waste incineration bottom ash. Analytica Chimica Acta, 451(2), 285–295.CrossRefGoogle Scholar
  7. Buat-Menard, P., & Chesselet, R. (1979). Variable influence of the atmospheric flux on the trace metal chemistry of oceanic suspended matter. Earth and Planetary Science Letters, 42(3), 398–411.CrossRefGoogle Scholar
  8. Buschmann, J., Berg, M., Stengel, C., & Sampson, M. L. (2007). Arsenic and manganese contamination of drinking water resources in Cambodia: Coincidence of risk areas with low relief topography. Environmental Science and Technology, 41(7), 2146–2152.CrossRefGoogle Scholar
  9. Campanella, L., Dorazio, D., Petronio, B. M., & Pietrantonio, E. (1995). Proposal for a metal speciation study in sediments. Analytica Chimica Acta, 309(1–3), 387–393.CrossRefGoogle Scholar
  10. Chakraborti, D., Mukherjee, S. C., Pati, S., Sengupta, M. K., Rahman, M. M., Chowdhury, U. K., et al. (2003). Arsenic groundwater contamination in middle Ganga plain, Bihar, India: A future danger. Environmental Health Perspectives, 111(9), 1194–1201.CrossRefGoogle Scholar
  11. Chakroborty, C., & Chattopadhyay, G. S. (2001). Quaternary geology of South Ganga Plain in Bihar. Indian Minerals, 55(3&4), 133–142.Google Scholar
  12. Che, Y., He, Q., & Lin, W. (2003). The distributions of particulate heavy metals and its indication to the transfer of sediments in the Changjiang Estuary and Hangzhou Bay, China. Marine Pollution Bulletin, 46(1), 123–131.CrossRefGoogle Scholar
  13. Davidson, C. M., Duncan, A. L., Littlejohn, D., Ure, A. M., & Garden, L. M. (1998). A critical evaluation of the three-stage BCR sequential extraction procedure to assess the potential mobility and toxicity of heavy metals in industrially-contaminated land. Analytica Chimica Acta, 363(1), 45–55.CrossRefGoogle Scholar
  14. Dean, W. E. Jr. (1974). Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: Comparison with other methods. Journal of Sedimentary Petrology, 44(1), 242–248.Google Scholar
  15. Deurer, R., Forstner, U., & Schmoll, G. (1978). Selective chemical extraction of carbonate-associated metals from recent lacustrine sediments. Geochimica et Cosmochimica Acta, 42(4), 425–427.CrossRefGoogle Scholar
  16. Dickinson, W. W., Dunbar, G. B., & McLeod, H. (1996). Heavy metal history from cores in Wellington Harbour, New Zealand. Environmental Geology, 27(1), 59–69.CrossRefGoogle Scholar
  17. Dixit, S., & Hering, J. G. (2003). Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: Implications for arsenic mobility. Environmental Science & Technology, 37(18), 4182–4189.CrossRefGoogle Scholar
  18. Fernandez, E., Jiménez, R., Lallena, A. M., & Aguilar, J. (2004). Evaluation of the BCR sequential extraction procedure applied for two unpolluted Spanish soils. Environmental Pollution, 131(3), 355–364.CrossRefGoogle Scholar
  19. Florence, T. M. (1982). The speciation of trace elements in waters. Talanta, 29(5), 345–364.CrossRefGoogle Scholar
  20. Forstner, U. (1977) Geochemische Untersuchungen an den Sedimdnten ‘des Ries-Sees (Forschungsbohrung Niirdlingen 1973). Geologica Bauarica, 75, 37–48.Google Scholar
  21. Forstner, U., & Salomons, W. (1980). Trace metal analysis in polluted sediments. Part I. Assessment of sources and intensities. Environmental Technology Letters, 1(11), 494–505.CrossRefGoogle Scholar
  22. Gadde, R. R., & Laitinen, H. A. (1974). Heavy metal adsorption by hydrous iron and manganese oxides. Analytical Chemistry, 46(13), 2022–2026.CrossRefGoogle Scholar
  23. Gibbs, R. J. (1977). Transport phases of transition metals in the Amazon and Yukon rivers. The Geological Society of America Bulletin, 88(6), 829–843.CrossRefGoogle Scholar
  24. Goh, B. P. L., & Chou, L. M. (1997). Heavy metals in marine sediments of Singapore. Environmental Monitoring and Assessment, 44(1–3), 67–80.CrossRefGoogle Scholar
  25. Gomez Ariza, J. L., Giraldez, I., Sanchez-Rodas, D., & Moralesm, E. (2000). Metal sequential extraction procedure optimized for heavily polluted and iron oxide rich sediments. Analytica Chimica Acta, 414(1–2), 151–164.CrossRefGoogle Scholar
  26. Grasshoff, K., Kleming, K., & Ehrhardt, M. (1999). Methods of seawater analysis. Chichester: Wiley.CrossRefGoogle Scholar
  27. Guevara-Riba, A., Sahuquillo, A., Rubio, R., & Rauret, G. (2004). Assessment of metal mobility in dredged harbour sediments from Barcelona, Spain. Science of the Total Environment, 321(1–3), 241–255.CrossRefGoogle Scholar
  28. Hornung, H., Karm, M. D., & Cohen, Y. (1989). Trace metal distribution on sediments and benthic fauna of Haifa Bay, Israel. Estuarine, Coastal and Shelf Science, 29(1), 43–56.CrossRefGoogle Scholar
  29. Horowitz, A., & Elrick, K. (1987). The relation of stream sediment surface area, grain size, and composition to trace element chemistry. Applied Geochemistry, 2(4), 437–451.CrossRefGoogle Scholar
  30. Jain, C. K., Gupta, H., & Chakrapani, G. J. (2007). Enrichment and fractionation of heavy metals in bed Sediments of River Narmada, India. Environmental Monitoring and Assessment, 141(1–3), 35–47.Google Scholar
  31. Jenne, F. A. (1968) Controls on Mn, Fe, Co, Ni, Cu and Zn concentrations in soils and water: The significance of hydrous Mn and Fe oxides. In R. F. Gould (Ed.), Trace inorganics in waters. Advances in Chemistry Series 73 (pp. 337–387). Washington, DC: American Chemistry Society.CrossRefGoogle Scholar
  32. Kersten, M. & Forstner, U. (1986). Chemical fractionation of heavy metals in anoxic estuarine and coastal sediments. Water Science and Technology, 18(4–5), 121–130.Google Scholar
  33. Kimbrough, D. E., & Wakakuwa, J. R. 1989. Acid digestion for sediments, sludges, soils and solid wastes. A proposed alternative to EPA SW 846 Method 3050. Environmental Science and Technology, 23(7), 898–900.CrossRefGoogle Scholar
  34. Koretsky, C. M., Haas, J. R., Ndenga, N. T., & Miller, D. (2006). Seasonal variations in vertical redox stratification and potential influence on trace metal speciation in minerotrophic peat sediments. Water Air Soil Pollution, 173(1–4), 373–403.CrossRefGoogle Scholar
  35. Kumar, G. (2003). Quaternary stratigraphy of the Indo-Gangetic plain, India: A review. In Proceedings 4th South Asia Geology Congress (GEOSAS IV), Geological Survey of India (pp. 31–50). India: New Delhi.Google Scholar
  36. Kumar, G., Khanna, P. C., & Prasad, S. (1996) Sequence stratigraphy of the foredeep and evolution of the Indi-Gangetic plain, Uttar Pradesh. In Proceedings, Symposium on NW Himalaya and Foredeep, Geological Survey of India (pp. 173–207). India: New Delhi.Google Scholar
  37. Lachica, M., & Barahona, E. (1993). The determination of trace elements by flame atomic absorption spectrometry: Effects of the composition of standard solution matrices. International Journal of Environmental Analytical Chemistry, 51(1–4), 219–221.CrossRefGoogle Scholar
  38. Lima, M. C., Giacomelli, M. B. O., Stupp, V., Roberge, F. D., & Barrera, P. B. (2001). Speciation analysis of copper and lead in Tubacao River sediment using the Tessier sequential extraction procedure. Quimica Nova, 24(6), 734–742.CrossRefGoogle Scholar
  39. Loska, K., & Wiechula, D. (2002). Speciation of cadmium in the bottom sediment of Rybnik Reservoir. Water, Air and Soil Pollution, 141(1–4), 73–89.CrossRefGoogle Scholar
  40. Luoma, A., & Campbell, P. C. G. (1987). Partitioning of trace metals in sediment: Relationship with bioavailability. Hydrobiology, 149(1), 43–52.CrossRefGoogle Scholar
  41. Manning, B. A., Fendorf, S. E., & Goldberg, S. (1998). Surface structures and stability of arsenic (III) on goethite: Spectroscopic evidence for innersphere complexes. Environmental Science and Technology, 32(16), 2383–2388.CrossRefGoogle Scholar
  42. Martin, R., Sanchez, D. M., & Gutierrez, A. M. (1998). Sequential extraction of U, Th, Ce, La and some heavy metals in sediments from Ortigas river, Spain. Talanta, 46(5), 1115–1121.CrossRefGoogle Scholar
  43. Modak, D. P., Singh, K. P., Chandra, H., & Ray, P. K. (1992). Mobile and bound forms of metals in sediment of lower Ganges. Water Resources, 26(11), 1541–1548.Google Scholar
  44. Morillo, J., Usero, J., & Gracia, I. (2004). Heavy metal distribution in marine sediments from the southwest coast of Spain. Chemosphere, 55(3), 431–442.CrossRefGoogle Scholar
  45. Mossop, K. F., & Davidson, C. M. (2003). Comparison of original and modified BCR sequential extraction procedures for the fractionation of copper, iron, lead, manganese and zinc in soils and sediments. Analytica Chimica Acta, 478(1), 111–118.CrossRefGoogle Scholar
  46. Muller, G. (1979). Schwermetalle in den Sedimenten des Rheins Veränderungen seit 1971. Umschau, 79, 778–783.Google Scholar
  47. Nembrini, G. P., Rapin, F., Garcia, J. I., & Forstner U. (1982). Speciation of Fe and Mn in a sediment core of the Baie de Villefrance (Mediterranean Sea, France). Environmental Technology Letters, 3(12), 545–552.CrossRefGoogle Scholar
  48. Panda, D., Subramanian, V., & Panigrahy, R. C. (1995). Geochemical fractionation of heavy metals in Chilka lake (east coast of India) a tropical coastal lagoon. Environmental Geology, 26(4), 199–210.CrossRefGoogle Scholar
  49. Pederson, T. F., & Price, N. B. (1982). The geochemistry of manganese carbonate in Panama basin sediments. Geochimica et Cosmochimica Acta, 46(1), 59–68.CrossRefGoogle Scholar
  50. Pempkowiak, J., Sikora, A., & Biemacka, E. (1999). Speciation of heavy metals in marine sediments vs. their bioaccumulation by Mussels. Chemosphere, 39(2), 313–321.CrossRefGoogle Scholar
  51. Perin, G., Craboledda, L., Lucchese, M., Cirillo, R., Dotta, L., & Zanette, M. L. (1985). Heavy metal speciation in the sediments of Northern Adriatic sea—A new approach for environmental toxicity determination. In T. D. Lekkas (Ed.), Heavy metal in the environment (pp. 454–456). Athens: CEP Consultants.Google Scholar
  52. Pueyo, M., Mateu, J., Rigol, A., Vidal, M., Lopez-Sanchez, J. F., & Rauret, G. (2008). Use of the modified BCR three-step sequential extraction procedure for the study of trace element dynamics in contaminated soils. Environmental Pollution, 152(2), 330–341.CrossRefGoogle Scholar
  53. Quevauviller, P., Rauret, G., Muntau, H., Ure, A. M., Rubio, R., & Lopez-Sanchez, J. F. (1994). Evaluation of a sequential extraction procedure for the determination of extractable trace metal contents in sediments. Fresenius Journal of Analytical Chemistry, 349(12), 808–814.CrossRefGoogle Scholar
  54. Rauret, G., Rubio, R., & Lopez-Sanchez, J. F. (1989). Optimization of Tessier procedure for metal solid speciation in river sediments. International Journal of Environmental Analytical Chemistry 36(2), 69–83.CrossRefGoogle Scholar
  55. Rauret, G., Lopez-Sanchez, J. F., Sahuquillo, A., Rubio, R., Davidson, C., Ure, A., et al.(1999). Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. Journal of Environmental Monitoring, 1(1), 57–61.CrossRefGoogle Scholar
  56. Raven, K. P., Jain, A., & Leoppert, R. H. (1998). Arsenic and arsenate adsorption on ferrihydrite: Kinetics, equilibrium, and adsorption envelopes. Environmental Science & Technology, 32(3), 344–349.CrossRefGoogle Scholar
  57. Ravenscroft, P., McArthur, J. M., & Hoque, B. A. (2001). Geochemical and palaeohydrological controls on pollution of groundwater by arsenic. In W. R. Chappel, C. O. Abernathy and R. Calderon (Eds.), Arsenic exposure and health effects IV (pp. 53–78). Oxford: Elsevier.Google Scholar
  58. Reimann, C., & de Carital, P. (2000). Intrinsic flows of element enrichment factors (EFs) in environmental geochemistry. Environmental Science & Technology, 34(24), 5084–5091.CrossRefGoogle Scholar
  59. Ridgway, J., & Shimmield, G. (2002). Estuaries as repositories of historical contamination and their impact on shelf seas. Estuarine, Coastal and Shelf Science, 55(6), 903–928CrossRefGoogle Scholar
  60. Root, R. A., Dixit, S., Campbell, K. M., Jew, A. D., Hering, G. J., & O’Day, P. A. (2007). Arsenic sequestration by sorption processes in high-iron sediments. Geochimica et Cosmochimica Acta, 71(23), 5872–5803.CrossRefGoogle Scholar
  61. Saha, D., Sreehari, S. M. S., Dwivedi, S. N., & Bhartariya, K. G. (2009). Evaluation of hydrogeochemical processes in arsenic contaminated alluvial aquifers in parts of Mid-Ganga Basin, Bihar, Eastern India. Environmental Earth Science, 61(4), 799–811.CrossRefGoogle Scholar
  62. Saha, D., Sahu, S., & Chandra, P. C. (2010). Arsenic-safe alternate aquifers and their hydraulic characteristics in contaminated areas of Middle Ganga Plain, Eastern India. Environmental Monitoring and Assessment, 175(1–4), 331–348.Google Scholar
  63. Sahuquillo, A., Lopez-Sanchez, J. F., Rubio, R., Rauret, G., Thomas, R. P., Davidson, C. M., et al. (1999). Use of a certified reference material for extractable trace metals to assess sources of uncertainty in the BCR three-stage sequential extraction procedure. Analytica Chimica Acta, 382, 317–327.CrossRefGoogle Scholar
  64. Salomons, W., & Mook, W. G. (1978). Processes affecting trace metals in lake Ijssel. Abstracts, 10th International Congress on Sedimentology, Jerusalem 569–570.Google Scholar
  65. Salomons, W., & Förstner, U. (1984). Metals in the hydrocycle. New York: Springer.CrossRefGoogle Scholar
  66. Schiff, K. C., & Weisberg, S. B. (1999). Iron as reference element for determining trace metal enrichment in southern California coastal shelf sediments. Marine Environmental Research, 48(2), 161–176.CrossRefGoogle Scholar
  67. Shapiro, L. (1975). Rapid analysis of silicate, carbonate and phosphate rocks—revised edition. U.S. Geological Survey Bulletin, 1401, 76.Google Scholar
  68. Singh, I. B. (2001). Proxy records of neotectonics, climate changes and anthropogenic activity in the Late Quaternary of Ganga plain. Nat. Symp. Role of Earth Sci. in integrated development and related societal issues (Vol. 65, pp. 33–49). Geological Survey of India, Special Publication.Google Scholar
  69. Singh, A. K. (2004). Arsenic contamination in groundwater of north eastern India. 11th National symposium on Hydrology with focal theme on water quality. Roorkee, Proceeding, 255–262.Google Scholar
  70. Smith, J. D., & Milne, P. J. (1979). Determination of Fe in suspended matter and sediments of the Yana River Estuary and the distribution of Cu, Pb, Zn and Mn in the sediments. Australian Journal of Marine and Freshwater Research, 30(1), 731–739.CrossRefGoogle Scholar
  71. Stephens, S. R., Alloway, B. J., Parker, A., Carter, J. E., & Hodson, M. E. (2001). Changes in the leachability of metals from dredged canal sediments during drying and oxidation. Environmental Pollution, 114(3), 407–413.CrossRefGoogle Scholar
  72. Steve, P., Milacic, R., & Pihlar, B. (2001). Partitioning of Zn, Pb and Cd in river sediments from a lead and zinc mining area using the BCR three-step sequential extraction procedure. Journal of Environmental Monitoring, 3(6), 586–590.CrossRefGoogle Scholar
  73. Sutherland, R. A. (2000). Bed sediment-associated trace metals in an urban stream OAHU, Hawaii. Environmental Geology, 39(6), 611–627.CrossRefGoogle Scholar
  74. Tam, N. F. Y., & Wong Y. S. (2000). Spatial variation of heavy metals in surface sediments of Hong Kong mangrove swamps. Environmental Pollution, 110(2), 195–205.CrossRefGoogle Scholar
  75. Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7), 844–851.CrossRefGoogle Scholar
  76. Tokalioglu, S., Kartal, S., & Elci, L. (2000). Determination of heavy metals and their speciation in lake sediments by flame atomic absorption spectrometry after a four-stage sequential extraction procedure. Analytica Chimica Acta, 413(1), 33–40.CrossRefGoogle Scholar
  77. Turekian, K. K., & Wedephol, K. H. (1961). Distribution of the elements in some major units of the earth crust. The Geological Society of America Bulletin, 72(2), 175–192.CrossRefGoogle Scholar
  78. Tuzen, M. (2003). Determination of trace metals in the River Yesilirmak sediments in Tokat, Turkey using sequential extraction procedure. Microchemical Journal, 74(1), 105–110.CrossRefGoogle Scholar
  79. Ure, A. M. (1990). Methods of analysis for heavy metals in soils. In B. J. Alloway (Ed.), Heavy Metals in Soils (pp. 40–80). Glasgow.Google Scholar
  80. Ure, A. M., Quevauviller, Ph., Muntau, H., & Griepink, B. (1993). Speciation of heavy metals in soils and sediments: An account of the improvement and harmonization of extraction techniques under the auspices of the BCR of the Commission of the European Communities. International Journal of Environmental Analytical Chemistry, 51(1–4), 135–151.CrossRefGoogle Scholar
  81. Usero, J., Gamero, M., Morillo J., & Gracia, I. (1998). Comparative study of three sequential extraction procedures for metals in marine sediments. Environment International, 24(4), 487–496.CrossRefGoogle Scholar
  82. Vaithiyanathan, P., Ramanathan, A. L., & Subramanian, V. (1993). Transport and distribution of heavy metals in Cauvery river. Water Air and Soil Pollution, 71(1–2), 13–28.CrossRefGoogle Scholar
  83. Wang, W. X., & Fisher, N. S. (1999). Assimilation efficiencies of chemical contaminants in aquatic invertebrates: A synthesis. Environmental Toxicology and Chemistry, 18(9), 2034–2045.CrossRefGoogle Scholar
  84. Xie, X., Wang, Y., Su, C., Liu, H., Duan, M., & Xie, Z. (2008). Arsenic mobilization in shallow aquifers of Datong Basin: Hydrochemical and mineralogical evidences. Journal of Geochemical Exploration, 98(3), 107–115.CrossRefGoogle Scholar
  85. Yuan, C., Shi, J., He, B., Liu, J., Liang, L., & Jiang, G. (2004). Speciation of heavy metals in marine sediments from the East China Sea by ICP-MS with sequential extraction. Environment International, 30(6), 769–783.CrossRefGoogle Scholar
  86. Zdenek, B. (1996). Evaluation of the concentrations of trace elements in stream sediments by factor and cluster analysis and the sequential extraction procedure. Science of the Total Environment, 177(1–3), 237–250.Google Scholar
  87. Zhang, J., Huang, W. W., & Martin, J. M. (1988). Trace metal distribution in Huanghe (Yellow river) estuarine sediments. Estuarine, Coastal and Shelf Science, 26(5), 499–516.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Alok Kumar
    • 1
  • A. L. Ramanathan
    • 1
  • Shashi Prabha
    • 1
  • Rajesh Kumar Ranjan
    • 1
    • 2
  • Shyam Ranjan
    • 1
    • 3
  • Gurmeet Singh
    • 1
    • 4
  1. 1.Biogeochemistry, Hydrogeochemistry and Glaciology Laboratory, School of Environmental SciencesJawaharlal Nehru UniversityNew DelhiIndia
  2. 2.School of Earth, Biological and Environmental SciencesCentral University of BiharPatnaIndia
  3. 3.Climate and Environmental Physics, Physics InstituteUniversity of BernBernSwitzerland
  4. 4.Environmental Science DivisionIndian Agricultural Research Institute, PUSANew DelhiIndia

Personalised recommendations