Skip to main content
Log in

Mutagenicity assessment of contaminated soil in the vicinity of industrial area

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In the industrial area of Chinhat, Lucknow (India) wastewater coming from pesticide manufacturing and other industries is used to irrigate the agricultural crops. This practice has been polluting the soil and pollutants might reach the food chain. Gas chromatographic analysis revealed the presence of certain organochlorine pesticides in soil samples. Samples were extracted using different solvents, i.e., hexane, acetonitrile, methanol, chloroform, and acetone (all were HPLC-grade, SRL, India). Soil extracts were assayed for mutagenicity using Ames Salmonella/mammalian microsome test. Mutagenicity was observed in the test samples and TA98 was the most responsive strain for all the soil extracts (irrigated with wastewater) in terms of mutagenic index in the presence (+S9) and absence (−S9) of metabolic activation. In terms of slope (m) of linear dose–response curve for the most responsive strain TA98 exhibited highest sensitivity against the soil extracts in the presence and absence of S9 fraction. Hexane-extracted soil sample (wastewater) exhibited maximum mutagenicity in terms of net revertants per gram of soil in the presence and absence of S9 mix as compared to the other soil extracts. Groundwater-irrigated soil extracts displayed low level of mutagenicity as compared to wastewater-irrigated soil. The soil is accumulating a large number of pollutants due to wastewater irrigation and this practice of accumulation has an adverse impact on soil health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abhilash, P. C., & Singh, N. (2010). Withania somnifera Dunal-mediated dissipation of lindane from simulated soil: Implications for rhizoremediation of contaminated soil. Journal of Soils Sediments, 10, 272–282.

    Article  CAS  Google Scholar 

  • Aleem, A., & Malik, A. (2003). Genotoxic hazarads of long-term application of wastewater on agricultural soil. Mutation Research, 538, 145–154.

    CAS  Google Scholar 

  • Alexander, R. R., Tang, J., & Alexander, M. (2002). Genotoxicity is unrelated to total concentration of priority carcinogenic polycyclic aromatic hydrocarbons in soils undergoing biological treatment. Journal of Environmental Quality, 31, 150–154.

    Article  CAS  Google Scholar 

  • Ames, B. N. (1971). The detection of chemical mutagens with enteric bacteria. In A. Hollaender (Ed.), Chemical mutagens: Principles and methods for their detection (Vol. 1, pp. 267–282). New York: Plenum.

    Google Scholar 

  • Ansari, M. I., & Malik, A. (2009). Genotoxicity of wastewaters used for irrigation of food crops. Environmental Toxicology, 24, 103–115.

    Article  CAS  Google Scholar 

  • Asita, A. O., & Makhalemele, R. (2008). Genotoxicity of chlorpyrifos, Alpha-thrin, Efekto virikop and Springbok to onion root tips cells. African Journal of Biotechnology, 23, 4244–4250.

    Google Scholar 

  • Barbee, G. C., Brown, K. W., & Donnelly, K. C. (1992). Fate of mutagenic chemicals in soil amended with petroleum and wood preserving sludges. Waste Management Research, 10, 73–85.

    CAS  Google Scholar 

  • Barra, R., Popp, P., Quiroz, R., Bauer, C., Cid, H., & von Tumpling, W. (2005). Persistent toxic substances in soils and waters along an altitudinal gradient in the Laja River Basin, Central Southern Chile. Chemosphere, 58, 905–915.

    Article  CAS  Google Scholar 

  • Celik, A., Mazmanci, B., Camlica, Y., & Aslin, A. (2003). Cytogenetic effects of lambda-cyhalothrin on Wistar rat bone marrow. Mutation Research, 539, 91–97.

    CAS  Google Scholar 

  • Chakraborty, D., & Konar, S. K. (2002). Ecological study on the status of pollution by steel plant waste on river Damodar at Barnpur, West Bengal. Indian Journal of Environmental Health, 44, 50–57.

    CAS  Google Scholar 

  • Chen, G., & White, P. A. (2004). The mutagenic hazards of aquatic sediments: A review. Mutation Research, 567, 151–225.

    Article  CAS  Google Scholar 

  • Chenon, P., Gauthier, L., Loubieres, P., Severac, A., & Delpoux, M. (2003). Evaluation of the genotoxic and teratogenic potential of a municipal sludge and sludge amended soil using the amphibian Xenopus laevis and the tobacco: Nicotiana tabacum L. var xanthi dulieu. Science of the Total Environment, 301, 139–150.

    Article  CAS  Google Scholar 

  • Claxton, L., & George S. (2002). Challenges and approaches for identifying carcinogens in contaminated media. In G. Sunahara, A. Renoux, C. Thellen, & A. Pilon (Eds.), Environmental analysis of contaminated sites (pp. 73–93). West Sussex: Wiley.

    Google Scholar 

  • Claxton, L. D., Stead, A. G., & Walsh, D. (1988). An analysis by chemical class of Salmonella mutagenicity tests as predictors of animal carcinogenicity. Mutation Research, 205, 197–225.

    Article  CAS  Google Scholar 

  • Claxton, L. D., Douglas, G., Krewski, D., Lewtas, J., Matsushita, H., & Rosenkranz, H. (1992). Overview, conclusions, and recommendations of the IPCS collaborative study on complex mixtures. Mutation Research, 276, 61–80.

    CAS  Google Scholar 

  • Claxton, L. D., Houk, V. S., & Hughes, T. J. (1998). Genotoxicity of industrial wastes and effluents. Mutation Research, 410, 237–243.

    Article  CAS  Google Scholar 

  • Cotelle, S., Masfaraund, J. F., & Férard, J. F. (1999). Assessment of the genotoxicity of contaminated soil with Allium/Vicia-micronucleus and the Tradescantia-micronucleus assays. Mutation Research, 426, 167–171.

    Article  CAS  Google Scholar 

  • Courty, B., Curieux, F. L., Milon, V., & Marzin, D. (2004). Influence of extraction parameters on the mutagenicity of soil samples. Mutation Research, 565, 23–34.

    CAS  Google Scholar 

  • Courty, B., Curieux, F. L., Belkessam, L., Laboudigue, A., & Marzin, D. (2008). Mutagenic potency in Salmonella typhimurium of organic extracts of soil samples originating from urban, suburban, agricultural, forest and natural areas. Mutation Research, 653, 1–5.

    CAS  Google Scholar 

  • Covacia, A., Gheorgheb, A., Voorspoelsa, S., Maervoeta, J., Redekerc, E. S., Blustc, R., et al. (2005). Polybrominated diphenyl ethers, polychlorinated biphenyls and organochlorine pesticides in sediment cores from the Western Scheldt River (Belgium): Analytical aspects and depth profiles. Environmental International, 31, 367–375.

    Article  Google Scholar 

  • Davol, P., Donnelly, K. C., Brown, K. W., Thomas, J. C., Estiri, M., & Jones, D. H. (1989). Mutagenic potential of runoff water from soils amended with three hazardous industrial wastes. Environmental Toxicology and Chemistry, 8, 189–200.

    Article  CAS  Google Scholar 

  • DeMarini, D. M., Houk, V. S., Kornel, A., & Rogers, C. J. (1992). Effect of a base-catalyzed dechlorination process on the genotoxicity of PCB-contaminated soil. Chemosphere, 24, 1713–1720.

    Article  CAS  Google Scholar 

  • Donnelly, K. C., Brown, K. W., & DiGiullio, D. G. (1988). Mutagenic characterization of soil and water samples from a superfund site. Nuclear and Chemical Waste Management, 8, 135–141.

    Article  CAS  Google Scholar 

  • Donnelly, K. C., Brown, K. W., Anderson, C. S., Thomas, J. C., & Scott, B. R. (1991). Bacterial mutagenicity and acute toxicity of solvent and aqueous extracts of soil samples from an abandoned chemical manufacturing site. Environmental Toxicology and Chemistry, 10, 1123–1132.

    Article  CAS  Google Scholar 

  • Edenharder, R., Ortseifen, M., Koch, M., & Wesp, H. F. (2000). Soil mutagens are airborne mutagens: Variation of mutagenic activities induced in Salmonella typhimurium TA98 and TA100 by organic extracts of agricultural and forest soils in dependence on location and season. Mutation Research, 472, 23–36.

    CAS  Google Scholar 

  • Ehrlichmann, H., Dott, W., & Eisentraeger, A. (2000). Assessment of the water-extractablegenotoxic potential of soil samples from contaminated sites. Ecotoxicology and Environmental Safety, 46, 73–80.

    Article  CAS  Google Scholar 

  • Felton, J. S., & Wu, R. W. (2004). Ames/Salmonella assay: A bacterial test for mutagens. In Encyclopedia of life science. Wiley. doi:10.1038/npg.els.0001413.

  • Gan, J., Papiernik, S. K., Koskinen, W. C., & Yates, S. K. (1999). Evaluation of accelerated solvent extraction (ASE) for analysis of pesticide residues in soil. Environmental Science and Technology, 333, 249–3253.

    Google Scholar 

  • Hans, R. K., Farooq, M., Babu, G. S., Srivastava, S. P., Joshi, P. C., & Viswanathan, P. N. (1999). Agricultural produce in the dry bed of the River Ganga in Kanpur, India: A new source of pesticide contamination in human diets. Food and Chemical Toxicology, 37, 847–852.

    Article  CAS  Google Scholar 

  • Karabay, N. U., & Oguz, M. G. (2005). Cytogenetic and genetic effects of the insecticides, imidacloprid and methamidophos. Genetics and Molecular Research, 4, 653–662.

    CAS  Google Scholar 

  • Knize, M. G., Takemoto, B. T., Lewis, P. R., & Felton, J. S. (1987). The characterization of the mutagenic activity of soil. Mutation Research, 192, 23–30.

    Article  CAS  Google Scholar 

  • Lah, B., Vidic, T., Glasencnik, E., Cepeljnik, T., Gorjanc G., & Marinsek-Logar, R. (2008). Genotoxicity evaluation of water soil leachates by Ames test, comet assay, and preliminary Tradescantia micronucleus assay. Environmental Monitoring and Assessment, 13, 9107–118.

    Google Scholar 

  • Maron, D. M., & Ames, B. N. (1983). Revised methods for Salmonella mutagenicity test. Mutation Research, 101, 173–215.

    Google Scholar 

  • Malik, A., & Ahmad, M. (1995). Genotoxicity of some wastewaters in India. Environmental Toxicology and Water Quality, 10, 287–293.

    Article  CAS  Google Scholar 

  • Martin, F. L., Piearce, T. G., Hewer, A., Phillips, D. H., & Semple, K. T. (2005). A biomarker model of sublethal genotoxicity (DNA single-strand breaks and adducts) using the sentinel organism Aporrectodea longa in spiked soil. Environmental Pollution, 138, 307–315.

    Article  CAS  Google Scholar 

  • McDaniels, A. E., Reyes, A. L., Wymer, L. J., Rankin, C. C., & Stelma Jr., G. N. (1993). Genotoxic activity detected in soils from a hazardous waste site by the Ames test and an SOS colorimetric test. Environmental and Molecular Mutagenesis, 22, 115–122.

    Article  CAS  Google Scholar 

  • Mouchet, F., Gauthier, L., Mailhes, C., Jourdain, M. J., Ferrier, V., & Triffault, G. (2006). Biomonitoring of the genotoxic potential of aqueous extracts of soils and bottom ash resulting from municipal solid waste incineration using the comet and micronucleus tests on amphibian (Xenopus laevis) larave and bacterial assays (Mutatox® and Ames tests). Science of the Total Environment, 355, 232–246.

    Article  CAS  Google Scholar 

  • Pagano, D. A., & Zeiger, E. (1992). Conditions for detecting the mutagenicity of divalent metals in Salmonella typhimurium. Environmental and Molecular Mutagenesis, 19, 136–146.

    Article  Google Scholar 

  • Prakash, O., Suar, M., Raina, V., Pal, C. D. R., & Lal, R. (2004). Residues of hexachlorocyclohexane isomers in soil and water samples from Delhi and adjoining areas. Current Science, 87, 73–77.

    CAS  Google Scholar 

  • Randerath, K., Zhou, G. D., Donnelly, K. C., Safe, S. H., & Randerath, E. (1994). DNA damage induced by wood preserving waste extracts in vitro without metabolic activation, as assayed by P32 postlabeling. Cancer Letter, 83, 123–128.

    Article  CAS  Google Scholar 

  • Ruiz, M. J., & Marzin, D. (1996). Genotoxicity of six pesticides by Salmonella mutagenicity test and SOS chromotest. Mutation Research, 390, 245–255.

    Google Scholar 

  • Sanghi, R., & Sasi, K. S. (2001). Pesticides and heavy metals in agricultural soils of Kanpur, India. Bulletin of Environmental Contamination and Toxicology, 67, 446–454.

    Article  CAS  Google Scholar 

  • Šašek, V., Glaser, J. A., & Baveye, P. (2003). Genotoxicity estimation in soils contaminated with polycyclic aromatic hydrocarbons after biodegradation NATO Science Series IV. Earth and Environmental Sciences, 19, 211–215.

    Google Scholar 

  • Shukla, Y., Taneja, P., Arora, A., & Sinha, N. (2004). Mutagenic potential of mancozeb in Salmonella typhimurium. Journal of Environmental Pathology Toxicology Oncology, 23, 60–65.

    Google Scholar 

  • Singh, K. P., Takroo, R., & Ray, P. K. (1987). Analysis of pesticide residues in water. UP: Industrial Toxicology Research Centre Lucknow. ITRC manual no. 1.

  • Siroki, O., Underger, U., Institoris, L., & Nehez, M. (2001). A study on geno- and immunotoxicological effects of subacute propoxur and pirimicab exposure in rats. Ecotoxicology and Environmental Safety, 50, 76–81.

    Article  CAS  Google Scholar 

  • Steckert, A. V., Schnack, C. K., Sivano, J., Dal-Pizzol, F., & Andrade, V. M. (2009). Markers of pesticide exposure in irrigated rice culture. Journal of Agriculture and Food Chemistry, 57, 11441–11445.

    Article  CAS  Google Scholar 

  • Tzoneva, M., Kappas, A., Georgieva, V., Vachkova, R., & Tziolas, V. (1985). On the genotoxicity of the pesticides Endodan and Kilacar in 6 different test systems. Mutation Research, 157, 13–22.

    Article  CAS  Google Scholar 

  • Vargas, V. M. F., Motta, V. E. P., & Henriques, J. A. P. (1993). Mutagenic activity detected by the Ames test in river water under the influence of petrochemical industries. Mutation Research, 319, 31–45.

    Article  CAS  Google Scholar 

  • Vargas, V. M. F., Guidobono, R. R., Jordao, C., & Henriques, J. A. P. (1995). Use of two short-term tests to evaluate the genotoxicity of river water treated with different concentration/extraction procedures. Mutation Research, 343, 31–52.

    Article  CAS  Google Scholar 

  • Watanabe, T., & Hirayama, T. (2001). Genotoxicity of soil. Journal of Health Science, 47, 433–438.

    Article  CAS  Google Scholar 

  • Watanabe, T., Wannee, K. R., Asanoma, M., Tepsuwan, A., Tantasri, N., Meesiripan, N., et al. (2005). Mutagenicity of surface soils in urban areas of Aichi prefecture, Japan, and Bangkok, Thailand. Journal of Health Science, 51, 645–657.

    Article  CAS  Google Scholar 

  • Watanabe, T., Takahashi, K., Konishi, E., Hoshino, Y., Hasei, T., Asanoma, M., et al. (2008). Mutagenicity of surface soil from residential areas in Kyoto city, Japan, and identification of major mutagens. Mutation Research, 649, 201–212.

    CAS  Google Scholar 

  • White, P. A., & Claxton, L. D. (2004). Mutagens in contaminated soil: A review. Mutation Research, 567, 227–345.

    Article  CAS  Google Scholar 

  • Zemanek, M. G., Pollard, S. J., Kenefick, S. L., & Hrudey, S. (1997). Toxicity and mutagenicity of component classes of oils isolated from soils at petroleum- and creosole-contaminated. Journal of Air Waste Management Association, 47, 1250–1258.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was partly financed by the University Grants Commission, New Delhi vide letter F.No.: 36-12/2008 (SR). The Central Pollution Control Board, Ministry of Environment and Forests, New Delhi is gratefully thanked for providing the Gas Chromatography facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Malik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anjum, R., Malik, A. Mutagenicity assessment of contaminated soil in the vicinity of industrial area. Environ Monit Assess 184, 3013–3026 (2012). https://doi.org/10.1007/s10661-011-2167-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-2167-7

Keywords

Navigation