Skip to main content

Advertisement

Log in

Trace metals biogeochemistry of Kumaun Himalayan Lakes, Uttarakhand, India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The increasing urbanization, along with tourism, has posed a major threat to the Kumaun Himalayan Lakes, Uttarakhand, India. The total metal concentration in the water, interstitial water, and sediments along with the metal fractionation studies were carried out to understand the remobilization of the trace metals from the sediments of the lakes. The high concentration of the metals in the water column of the lakes generally decreases with depth and the metals release from the sediment is mainly due to the prevalence of anoxic condition at the sediment–water interface and sediment column. The sediment shows that metals Fe and Cr are derived from detrital source, whereas Co, Ni, and Zn are derived mainly from the organic matter dissolution. The sparse correlation of the trace metals with Ti shows most of the metals have chiefly re-precipitated from the water column. The metals speciation studies also supports that metals experience a high rate of anoxic dissolution and their precipitation onto the sediments are determined by the sediment composition and organic matter content. The high concentration of manganese in the interstitial water in the lakes indicates dissolution of organic matter. The released manganese is adsorbed/precipitated as carbonate phase (Nainital Lake) and oxide pahse (in other lakes). The study shows that the trace metals are regenerated from the sediments due to oxyhydroxide dissolution and organic matter decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ali, M. B., Tripathi, R. D., Rai, U. N., Pal, A., & Singh, S. P. (1999). Physico-chemical characteristics and pollution level of Lake Nainital (U.P., India): Role of macrophytes and phytoplankton in biomonitoring and phytoremediation of toxic metal ions. Chemosphere, 39, 2171–2182.

    Article  CAS  Google Scholar 

  • Bhat, M. I., & Ahmad, T. (1987). Geochemistry and petrogenesis of the Bhowali–Bhimtal volcanics, Kumaun Lesser Himalayas. Geosciences Journal, 3, 51–68.

    Google Scholar 

  • Boyle, J. (2001). Redox remobilzation and the heavy metal record in Lake sediments: A modelling approach. Journal of Paleolimnology, 26, 423–431.

    Article  Google Scholar 

  • Bruland, K. W., & Lohan, M. C. (2003). Controls of trace metals in seawater. In H. Elderfield (Vol. Ed.), Treatise on geochemistry 6: The oceans and marine geochemistry, (1st ed., pp. 23–57). UK: Elsevier Pergamon.

    Google Scholar 

  • Callender, E. (2004). Heavy metals in the environment—historical trends. In B. S. Lollar, (Vol. Ed.), Treatise on geochemistry 9: Environmantal geochemistry, (1st Ed., pp. 585–643). UK: Elsevier Pergamon.

    Google Scholar 

  • Calvert, S. E., & Pederson, T. F. (1993). Geochemistry of recent oxic and anoxic marine sediments: implications for the geological record. Marine Geology, 113, 67–88.

    Article  CAS  Google Scholar 

  • Canfield, D. E., Thamdrup, B., & Hansen, J. W. (1993). The anaerobic degradation of organic matter in Danish coastal sediments: Iron reduction, manganese reduction, and sulfate reduction. Geochimica et Cosmochimica Acta, 57, 3867–3883.

    Article  CAS  Google Scholar 

  • Carroll, S., O’Day, P. A., Esser, B., & Randall, S. (2002). Speciation and fate of trace metals in estuarine sediments, under reduced and oxidized conditions, Seaplane Lagoon, Alameda Naval Air Station (USA). Geochemical Transactions, 3, 81–101.

    Article  Google Scholar 

  • Chakrapani, G. J. (2002). Water and sediment geochemistry of major Kumaun Himalayan lakes, India. Environmental Geology, 43, 99–107.

    Article  CAS  Google Scholar 

  • Choudhary, P. (2008). Characterisation of organic matter in sediments of Kumaun Himalayan Lakes, (p. 110). Ph.D Thesis, Indian Institute of Technology, Roorkee, India.

  • Choudhary, P., Routh, J., Chakrapani, G. J., & Kumar, B. (2009). Biogeochemical Records of Paleoenvironmental Changes in Nainital Lake, Kumaun Himalayasa, India. Journal of Paleolimnology, 42, 571–586.

    Article  Google Scholar 

  • Das, B. K. (2005). Environmental pollution impact on water and sediments of Kumaun lakes, Lesser Himalaya, India: A comparative study. Environmental Geology, 49, 230–239.

    Article  CAS  Google Scholar 

  • Das, B. K., Singh, M., & van Grieken, R. (1995). The elemental chemistry of sediments in the Nainital Lake, Kumaun Himalaya, India. Science of the Total Environment, 168, 85–90.

    Article  CAS  Google Scholar 

  • Davison, W. (1993). Iron and manganese in lakes. Earth-Science Review, 34, 119–163.

    Article  CAS  Google Scholar 

  • Forstner, U., & Wittmann, G. T. W. (1983). Metal pollution in the aquatic environment, (2nd Revised Edition, p. 486). Springer Verlag.

  • Gambrell, R. P., Wiesepepe, J. B., Patrick, W. H., Jr., & Duff, M. C. (1991). The effects of pH, redox and salinity on metal release from a contaminated sediment. Water Air and Soil Pollution, 57, 359–367.

    Article  Google Scholar 

  • Guo, T., DeLaune, R. D., & Patrick, W. H., Jr. (1997). The influence of sediment redox chemistry on chemically active forms of arsenic, cadmium, chromium, and zinc in estuarine sediment. Environmental International, 23, 305–316.

    Article  CAS  Google Scholar 

  • Gupta, P. K., & Pant, M. C. (1989). Sediment chemistry of Lake Bhimtal, UP, India. International Review of Hydrobiologia, 74, 679–687.

    Article  CAS  Google Scholar 

  • Irabien, M. J., & Velasco, F. (1999). Heavy metals in Oka river sediments (Urdaibai National Biosphere Reserve, northern Spain): Lithogenic and anthropogenic effects. Environmental Geology, 37, 54–63.

    Article  CAS  Google Scholar 

  • Jacobs, L., Emerson, S., & Skei, J. (1985). Partitioning and transport of metals across the O2/H2S Interface in a permenantly anoxic basin: Framvaren Fjord, Norway. Geochimica et Cosmochimica Acta, 49, 1433–1444.

    Article  CAS  Google Scholar 

  • Jain, C. K., Malik, D. S., & Yadav, R. (2007). Metal fractionation study on bed sediments of Lake Nainital, Uttaranchal, India. Environmental Monitoring and Assessment. doi:10.1007/s10661-006-9383-6.

    Google Scholar 

  • Koretsky, C. M., Haas, J. R., Miller, D., & Ndenga, N. T. (2006). Seasonal variations in pore water and sediment geochemistry of littoral lake sediments (Asylum Lake, MI, USA). Geochemical Transactions, 7. doi:10.1186/1467-4886-7-11.

  • Kotlia, B. S., Bhalla, M. S., Sharma, C., Rajagopalan, G., Ramesh, R., Chauhan, M. S., et al. (2000). Palaeoclimatic conditions in the upper Pleistocene and Holocene Bhimtal–Naukuchiatal lake basin in south-central Kumaun, North India. Palaeogeograpgy Palaeoclimatology and Palaeoecology, 130, 307–321.

    Article  Google Scholar 

  • Leleyter, L., & Probst, J. L. (1999). A new sequential extraction procedure for the speciation of particular trace elements in river sediments. International Journal of Environmental and Analytical Chemistry, 73, 109–128.

    Article  CAS  Google Scholar 

  • Lovley, D. R. (1995). Microbial reduction of iron and manganese, and other metals. In D. L. Sparks (Ed.), Advances in agronomy, (pp. 175–230). New York: Academic.

    Google Scholar 

  • Morel, F. M. M., & Price, N. M. (2003). The biogeochemical cycles of trace metals in the ocean. Science, 300, 944–947.

    Article  CAS  Google Scholar 

  • Mortimer, R. J. G., & Rae, J. E. (2000). Metal speciation (C, Zn, Pb, Cd) and organic matter in oxic to suboxic salt marsh sediments, Severn Estuary, Southeastern Britain. Marine Pollution Bulletin, 40, 377–386.

    Article  CAS  Google Scholar 

  • Muller, G. (1979). Schwermetalle in den sedimenten des rheins—Veranderungen seit. Umschau, 79, 778–783 (original in German language).

    Google Scholar 

  • Nachiappan, P. R., Kumar, B., Saravanakumar, U., Jacob, N., Sharma, S., Joseph, T. B., et al. (2000). Estimation of sub-surface components in the water balance of lake Nainital (Kumaun Himalaya, India) using environmental isotopes. Proceedings of International Conference on Integrated Water resources Management for Sustainable Development, New Delhi, 239–254.

  • Panda, D., Subramanian, V., & Panigrahy, R. C. (1995). Geochemical fractionation of heavy metals in Chilka Lake (east coast of India)—a tropical coastal lagoon. Environmental Geology, 26, 199–210.

    Article  CAS  Google Scholar 

  • Pant, M. C., Sharma, A. P., & Sharma, P. C. (1980). Evidence for the increased eutrophication of lake Nainital as a result of human interference. Environmental Pollution (Series B), 1, 149–161.

    Article  CAS  Google Scholar 

  • Pauwels, H., Foucher, J.-C., & Kloppmann, W. (2000). Denitrifiaction and mixing in a schist aquifer: influence on water chemistry and isotopes. Chemical Geology, 168, 307–324.

    Article  CAS  Google Scholar 

  • Purushothaman, P. (2009). Nutrients and heavy metals in Kumaun Himalayan Lakes, India, Ph.D thesis, Indian Institute of Technology Roorkee, India.

  • Purushothaman, P., Soren, A., & Chakrapani, G. J. (2008). Phosphorous fractionation in Nainital Lake. Himalayan Geology, 29, 73–79.

    CAS  Google Scholar 

  • Schneider, R. R., Price, B., Muller, P. J., Kroon, D., & Alexander, I. (1997). Monsoon related variations in Zaire (Congo) sediment load and influence of fluvial silicate supply on marine productivity in the east equatorial Atlantic during the last 200,000 years. Paleoceanography, 12, 463–481.

    Article  Google Scholar 

  • Scholz, F., & Newmann, T. (2007). Trace element diagenesis in pyrite-rich sediments of the Achterwasser lagoon, SW Baltic Sea. Marine Chemistry, 107, 516–532.

    Article  CAS  Google Scholar 

  • Schwientek, M., Einsiedl, F., Stichler, W., Stogbauer, A., Strauss, H., & Maloszewski, P. (2008). Evidence for denitrifiaction regulated by pyrite oxidation in heterogeneous porous groundwater system. Chemical Geology. doi:10.1016/j.chemgeo.2008.06.005.

    Google Scholar 

  • Singh, S. P., & Gopal, B. (2002). Integrated management of water resources of Lake Nainital and its watershed: An Environmental Economics Approach, (p. 162). Mumbai, India: EERC, Indira Gandhi Institute for Developmental Research.

  • Sparks, D. L. (2005). Toxic metals in the environment: The role of surface. Elements, 1, 193–197.

    Article  CAS  Google Scholar 

  • Sprenger, M., & McIntosh, A. (1989). Relationship between concentrations of aluminum, cadmium, lead, and zinc in water, sediments, and aquatic macrophytes in six acidic lakes. Archives of Environmental Contaminant and Toxicology, 18, 225–231.

    Article  CAS  Google Scholar 

  • Staelens, N., Parkpian, P., & Polprasert, C. (2000). Assessment of metal speciation evolution in sewage sludge dewatered in vertical flow reed beds using a sequential extraction scheme. Chemical Speciation and Bioavailability, 12, 97–107.

    Article  CAS  Google Scholar 

  • Stumm, W., & Morgan, J. J. (1996). Aquatic chemistry: Chemical equilibria and rates in natural waters, (3rd Ed., p. 1022). Canada: Wiley.

    Google Scholar 

  • Szymanowska, A., Samecka-Cymerman, A., & Kempers, A. J. (1999). Heavy metals in three lakes in West Poland. Ecotoxicology and Environmental Safety, 43, 21–29.

    Article  CAS  Google Scholar 

  • Tack, F. M., & Verloo, M. G. (1995). Chemical speciation and fractionation in soil and sediment heavy metal analysis: A review. International Journal of Environmental Chemistry, 59, 225–238.

    Article  CAS  Google Scholar 

  • Taylor, S. R., & Mclennan, S. M. (1985). The continental crust: Its composition and evolution, (p. 312). Oxford: Blackwell.

    Google Scholar 

  • Tessier, A., Rapin, F., & Carignan, R. (1985). Trace metals in oxic lake sediments: Possible adsorption on to iron oxyhydroxides. Geochimica et Cosmochimica Acta, 49, 183–194.

    Article  CAS  Google Scholar 

  • Tessier, A., Fortin, D., Belzile, N., DeVitre, R. R., & Leppard, G. G. (1996). Metal sorption to diagenetic iron and manganese oxyhydroxides and associated organic matter: Narrowing the gap between field and laboratory measurements. Geochimica et Cosmochimica Acta, 60, 387–404.

    Article  CAS  Google Scholar 

  • Tribovillard, N., Algeo, T. J., Lyons, T., & Riboulleau, A. (2006). Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology, 232, 12–32.

    Article  CAS  Google Scholar 

  • Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of the elements in some major units of the earth’s crust. Geological Society of America Bulletin, 72, 175–192.

    Article  CAS  Google Scholar 

  • Valdiya, K. S. (1988). Geology and natural environment of Nainital Hills, Kumaun Himalaya, (p. 155). Nainital, India: Gyanodaya Prakashan.

    Google Scholar 

  • van Griethuysen, C., Luitwieler, M., Joziasse, J., & Koelmans, A. A. (2005). Temporal variation of trace metal geochemistry in floodplain lake sediment subject to dynamic hydrological conditions. Environmental Pollution, 137, 281–294.

    Article  Google Scholar 

  • Wang, S. X., Zhang, S. Z., & Shan, X. Q. (2003). Fractionation of heavy metals in different particle size sediments and its relationship with heavy metal pollution. Bulletin of Environmental Contamination Toxicology, 71, 873–880.

    Article  CAS  Google Scholar 

  • Warren, L. A., & Haack, E. A. (2001). Biogeochemical controls on metal behaviour in freshwater environments. Earth-Science Reviews, 54, 261–320.

    Article  CAS  Google Scholar 

  • Yu, K. C., Tsai, L. J., Chen, S. H., & Ho, S. T. (2001). Chemical binding of heavy metals in anoxic river sediments. Water Research, 35, 4086–4094.

    Article  CAS  Google Scholar 

  • Zabel, M., Schneider, R. R., Wagner, T., Adegbie, A. T., de Vries, U., & Kolonic, S. (2001). Late Quaternary climate changes in central Africa as inferred from terrigenous input to the Niger Fan. Quaternary Research, 56, 207–217.

    Article  CAS  Google Scholar 

  • Zhai, M., Kampunzu, H. A. B., Modisi, M. P., & Totolo, O (2003). Distribution of heavy metals in Gaborone urban soils (Botswana) and its relationship to soil pollution and bedrock composition. Environmental Geology, 45, 171–180.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We thank MoEF, India for funding the project. P.P specially acknowledges MoEF, CSIR India for support through fellowship. We also thank Ravi, Yadav, and Vijay for their help in the field and lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Purushothaman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Purushothaman, P., Chakrapani, G.J. Trace metals biogeochemistry of Kumaun Himalayan Lakes, Uttarakhand, India. Environ Monit Assess 184, 2947–2965 (2012). https://doi.org/10.1007/s10661-011-2163-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-2163-y

Keywords

Navigation