Skip to main content
Log in

Long-term seasonal changes of the Danube River eco-chemical status in the region of Serbia

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Seasonal spatial and temporal changes of selected eco-chemical parameters in section of the Danube River flowing through Serbia were analyzed. Data for electrical conductivity (EC), dry and suspended matter, residue on ignition, chemical oxygen demand (COD), biochemical oxygen demand (BOD-5), ultraviolet extinction, dissolved oxygen (DO), oxygen saturation, pH, nitrates, total phosphorus, and nitrogen were collected between 1992 and 2006. The use of monthly medians combined with linear regression and two-sided t test has been proven to be the best approach for resolving trends from natural variability of investigated parameters and for determining trend significance. Patterns of temporal changes between different months were examined. It was also determined that spatial trends of some parameters oscillate in predictable manner, increasing in one part of the year and declining in the other. Regression slope coefficients, an excellent indicator for determining when the water quality is changing the most along the course of the Danube, reach their maximum during summer for temperature (t), electric conductivity, nitrates, and total N, while in the same season suspended matter, COD, BOD-5, DO, and oxygen saturation coefficients reach their minimum. Correlations for used data sets of selected parameters were analyzed for better understanding of their behavior and mutual relations. It was observed that as Danube flows through Serbia, its general eco-chemical status either stagnates or improves, but the rate of river self-purification often depends on the season of the year.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • 13.060.30 JUS H.Z1. 160 (1987). Testing of industrial waters—Determination of suspended matters—Gravimetric method.

  • APHA AWWA WEF (1992a). 4500-NO \(_{3}^{-}\) NITROGEN (NITRATE).

  • APHA AWWA WEF (1992b). 4500-P PHOSPHORUS.

  • APHA AWWA WEF (1992c). Standard methods for the examination of water and wastwater 18th Edition.

  • Avis, C. H., & Weller, P. H. (2000). The water framework directive and the Danube River basin: Opportunities enhanced ecological management and public participation. European Water Management, 3(2), 46–50.

    CAS  Google Scholar 

  • Behrendt, H., van Gils, J., Schreiber, H., & Zessner, M. (2005). Point and diffuse nutrient emissions and loads in the transboundary Danube River Basin.—II. Long-term changes. Archiv fuer Hydrobiologie, Supplement, 158(1–2), 221–247.

    CAS  Google Scholar 

  • Crnković, D., Crnković, N., Filipović, A., Rajaković, Lj., Perić-Grujić, A. Jr., & Ristić, M. (2008). Danube and Sava river sediment monitoring in Belgrade and its surroundings. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances & Environmental Engineering, 43(12), 1353–1360.

    Article  Google Scholar 

  • Dumbrava, A., & Birghila, S. (2009). Analysis of some metal levels in Danube River water. Environmental Engineering and Management Journal, 8(2), 219–224.

    CAS  Google Scholar 

  • Dumbrava, A., Birghila, S., & Enache, I. (2008). Water quality characteristics along the course of the Danube River. III The Cernavoda area. Analele Universitatii “Ovidius” Constanta, 19(1–2), 19–26.

    CAS  Google Scholar 

  • Enache, I. (2008). The second joint Danube survey expedition—Hazardous metals and metals concentration from Danube river sediment. Analele Universitatii Bucuresti, Chimie, 17(2), 61–69.

    CAS  Google Scholar 

  • EPA 360.2. (1971). Oxygen, Dissolved (Modified Winkler, Full-Bottle Technique).

  • Galatchi, L. D., & Vladimir, A. N. (2006). Critical analysis of the Danube River water quality in Tulcea (Romania) as part of the sustainable development evaluation of the region. Analele Universitatii “Ovidius” Constanta, Seria: Chimie, 17(2), 242–247.

    CAS  Google Scholar 

  • Guieu, C., & Martin, J. M. (2002). The level and fate of metals in the Danube River plume. Estuarine, Coastal and Shelf Science, 54(3), 501–512.

    Article  CAS  Google Scholar 

  • ICPDR (2005). Danube Basin Analysis (WFD Roof Report 2004) ICPDR Document IC/084.

  • ISO 5667-6 (1990). Water quality—Sampling—Part 6: Guidance on sampling of rivers and streams.

  • JUS ISO 5663 (1984). Water quality—Determination of Kjeldahl nitrogen.

  • JUS ISO 8467 (1986). Water quality—Determination of permanganate index.

  • Kalchev, R., Ionica, D., Beshkova, M., Botev, I., & Sandu, C. (2008). Long-term and seasonal changes of nutrients, seston and phytoplankton concentrations in the Lower Danube (Bulgarian-Romanian stretch). Archiv fuer Hydrobiologie, Supplement, 166(1–2), 25–43.

    CAS  Google Scholar 

  • Kanji, G. K. (2006). 100 Statistical Tests, (3rd Edn). London: SAGE Publications Ltd.

    Google Scholar 

  • Kenarova, A. (2005). Participation of microorganisms in self-purification processes of Maritsa river in its upper flow, Bulgaria. Journal of Balkan Ecology, 8(3), 317–325.

    CAS  Google Scholar 

  • Kraus-Miljević, N. (1985). Supersaturation of dissolved oxygen in the river Velika Morava. Journal of the Serbian Chemical Society, 50(8), 413–418.

    Google Scholar 

  • Krmar, M., Slivka, J., Varga, E., Bikit, I., & Vesković, M. (2009). Correlations of natural radionuclides in sediments from the Danube River. Journal of Geochemical Exploration, 100(1), 20–24.

    Article  CAS  Google Scholar 

  • Küchler, I. L., Miekeley, N., & Forsberg, B. R. (2000). A contribution to the chemical characterization of rivers in the Rio Negro Basin, Brazil. Journal of the Brazilian Chemical Society, 11(3), 286–292.

    Article  Google Scholar 

  • Kundev, V., Dombalov, I., & Pelovski, Y. (2001). Transboundary “hot spots” between Bulgaria, Romania and Yugoslavia. Journal of Environmental Protection and Ecology, 2(3), 589–594.

    CAS  Google Scholar 

  • Lair, G. J., Zehetner, F., Khan, Z. H., & Gerzabek, M. H. (2009). Phosphorus sorption–desorption in alluvial soils of a young weathering sequence at the Danube River. Geoderma, 149(1–2), 39–44.

    Article  CAS  Google Scholar 

  • Laurencelle, L., & Dupuis, F. A. (2002). Statistical Tables, Explained and Applied. Singapore: World Scientific Publishing Co. Pte. Ltd.

    Book  Google Scholar 

  • Literathy, P. (2006). Monitoring and assessment of oil pollution in the Danube River during the transnational joint Danube survey. Water Science and Technology, 53(10), 121–129.

    Article  CAS  Google Scholar 

  • Liu, Z., Liu, X., & Liao, C. (2008). Daytime deposition and nighttime dissolution of calcium carbonate controlled by submerged plants in a karst spring-fed pool: Insights from high time-resolution monitoring of physico-chemistry of water. Environmental Geology, 55, 1159–1168.

    Article  CAS  Google Scholar 

  • Madarasz, C., & Horvath, L. (2001). Analysis of the salt component parameters in the Danube, 1977–1996. North-Transdanubian Authority for Environmental Protection, Hung, Verhandlungen-Internationale Vereinigung fuer Theoretische und Angewandte Limnologie, 27(7), 3954–3958.

    CAS  Google Scholar 

  • Meier, P. C., & Zund, R. E. (2000) Statistical Methods in Analytical Chemistry (2nd Edn). New York: Wiley.

    Book  Google Scholar 

  • Milenković, N., Damjanović, M., & Ristić, M. (2005). Study of heavy metal pollution in sediments from the Iron Gate (Danube river), Serbia and Montenegro. Polish Journal of Environmental Studies, 14(6), 781–787.

    Google Scholar 

  • Miljević, N., Golobočanin, D., Ogrinc, N., & Bondzić, A. (2008). Distribution of stable isotopes in surface water along the Danube River in Serbia. Isotopes in Environmental and Health Studies, 44(2), 137–148.

    Article  Google Scholar 

  • Miller, J. N., & Miller, J. C. (2005). Statistics and Chemometrics for Analytical Chemistry (5th Edn). Harlow: Pearson Education Limited.

    Google Scholar 

  • Oresčanin, V., Lulić, S., Medunić, G., & Mikelić, L. (2005). Granulometric and chemical composition of the Danube River sediments, Batina village, Croatia. Geologia Croatica, 58(2), 185–194.

    Google Scholar 

  • Pajević, S., Borišev, M., Rončević, S., Vukov, D., & Igić, R. (2008). Heavy metal accumulation of Danube river aquatic plants—Indication of chemical contamination. Central European Journal of Biology, 3(3), 285–294.

    Article  Google Scholar 

  • Park, J. H., Mitchell, M., & Driscoll, C. (2005). Winter-time climatic control on dissolved organic carbon export and surface water chemistry in an adirondack forested watershed. Environmental Science and Technology, 39, 6993–6998.

    Article  CAS  Google Scholar 

  • Pawellek, F., Frauenstein, F., & Veizer, J. (2002). Hydrochemistry and isotope geochemistry of the upper Danube River. Geochimica et Cosmochimica Acta, 66(21), 3839–3853.

    Article  CAS  Google Scholar 

  • Polić, P., Grzetić, I., & Jovancicević, B. (1994). Oxygen saturation variability in River Timok (Serbia/Bulgaria). Fresenius Environmental Bulletin, 3(7), 433–438.

    Google Scholar 

  • Prathumratana, L., Sthiannopkao, S., & Kim, K. W. (2008). The relationship of climatic and hydrological parameters to surface water quality in the lower Mekong River. Environment International, 34, 860–866.

    Article  CAS  Google Scholar 

  • Relić, D., Đorđević, D., Popović, A., Jadranin, M., & Polić, P. (2010). Fractionation and potential mobility of trace metals in Danube alluvial aquifer within an industrialized zone. Environmental Monitoring and Assessment, 171(1–4), 229–248.

    Google Scholar 

  • RHMZ (2009). 30 year averages http://www.hidmet.sr.gov.yu/latin/meteorologija/klimatologija_srednjaci.php. Accessed 28 December 2009.

  • Schreiber, H., Behrendt, H., Constantinescu, L. Th., Cvitanic, I., Drumea, D., Jabucar, D., et al. (2005). Point and diffuse nutrient emissions and loads in the transboundary Danube River Basin.—I. A modelling approach. Archiv fuer Hydrobiologie, Supplement, 158(1–2), 197–220.

    CAS  Google Scholar 

  • Teodoru, C., & Wehrli, B. (2005). Retention of sediments and nutrients in the Iron Gate I reservoir on the Danube River. Biogeochemistry, 76(3), 539–565.

    Article  CAS  Google Scholar 

  • US EPA (1983). Methods for Chemical Analysis of Water and Wastes EPA/600/4-79/020.

  • Vadadi-Fülöp, C., Hufnagel, L., & Zsuga, K. (2010). Effect of sampling effort and sampling frequency on the composition of the planktonic crustacean assemblage: A case study of the river Danube. Environmental Monitoring and Assessment, 163(1–4), 125–138.

    Article  Google Scholar 

  • van Gils, J., Behrendt, H., Constantinescu, A., Laszlo, F., & Popescu, L. (2005). Changes of the nutrient loads of the Danube since the late eighties: An analysis based on long term changes along the whole Danube River and its main tributaries. Water Science and Technology, 51(11), 205–212.

    Google Scholar 

  • Veljković, N. (2005). Global Wastewater Study and Sustainable Development Strategy for Serbia in Modern Technical Procedures in Sewage, Belgrade, Serbia, (2005).

  • Vogel, B. (2003). Joint Danube Survey. Investigations on the quality of the river Danube from its upper section to its delta. Oesterreichische Wasser- und Abfallwirtschaft, 55(9–10), 155–165.

    CAS  Google Scholar 

  • Vukov, D., Pal, B., Igić, R., & Anačkov, G. (2008). The distribution and the abundance of hydrophytes along the Danube River in Serbia. Central European Journal of Biology, 3(2), 177–187.

    Article  Google Scholar 

  • Vuković, Z., Sipka, V., Vuković, D., Todorović, D., & Marković, L. (2006). Behavior of long-lived radionuclides in the Danube River ecosystem. Journal of Radioanalytical and Nuclear Chemistry, 268(3), 647–649.

    Article  Google Scholar 

  • Winter, C., Hein, T., Kavka, G., Mach, R., & Farnleitner, H. (2007). Longitudinal changes in the bacterial community composition of the Danube River: A whole-river approach. Applied and Environmental Microbiology, 73(2), 421–431.

    Article  CAS  Google Scholar 

  • Živadinović, I., Ilijević, K., Gržetić, I., & Popović, A. (2010). Long term changes of the Danube River ecochemical status in the region of Serbia. Journal of Serbian Chemical Society, 75(8), 1125–1148.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin Ilijević.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ilijević, K., Gržetić, I., Živadinović, I. et al. Long-term seasonal changes of the Danube River eco-chemical status in the region of Serbia. Environ Monit Assess 184, 2805–2828 (2012). https://doi.org/10.1007/s10661-011-2153-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-2153-0

Keywords

Navigation