Skip to main content
Log in

Mixed response in bacterial and biochemical variables to simulated sand mining in placer-rich beach sediments, Ratnagiri, West coast of India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

We investigated the influence on bacterial community and biochemical variables through mechanical disturbance of sediment-akin to small-scale mining in Kalbadevi beach, Ratnagiri, a placer-rich beach ecosystem which is a potential mining site. Changes were investigated by comparing three periods, namely phase I before disturbance, phase II just after disturbance, and phase III 24 h after disturbance as the bacterial generation time is ≤7 h. Cores from dune, berm, high-, mid-, and low-tide were examined for changes in distribution of total bacterial abundance, total direct viability (counts under aerobic and anaerobic conditions), culturability and biochemical parameters up to 40 cm depth. Results showed that bacterial abundance decreased by an order from 106 cells g − 1 sediment, while, viability reduced marginally. Culturability on different-strength nutrient broth increased by 155% during phase II. Changes in sedimentary proteins, carbohydrates, and lipids were marked at berm and dune and masked at other levels by tidal influence. Sedimentary ATP reduced drastically. During phase III, Pearson’s correlation between these variables evolved from non-significant to significant level. Thus, simulated disturbance had a mixed effect on bacterial and biochemical variables of the sediments. It had a negative impact on bacterial abundance, viability and ATP but positive impact on culturability. Viability, culturability, and ATP could act as important indicators reflecting the disturbance in the system at short time intervals. Culturability, which improved by an order, could perhaps be a fraction that contributes to restoration of the system at bacterial level. This baseline information about the potential mining site could help in developing rational approach towards sustainable harnessing of resources with minimum damage to the ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alongi, D. M. (1990). The ecology of tropical soft-bottom benthic ecosystems. Oceanography and Marine Biology: An Annual Review, 28, 381–469.

    Google Scholar 

  • Bhosle, N. B., & Dhople, V. M. (1988). Distribution of some biochemical compounds in the sediments of the Bay of Bengal. Chemical Geology, 67, 341–352.

    Article  CAS  Google Scholar 

  • Bligh, E. G., & Dyer, W. (1959). A rapid method for total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37, 911–917.

    Article  CAS  Google Scholar 

  • Bulleid, N. C. (1978). An improved method for the extraction of adenosine triphosphate from marine sediments and seawater. Limnology and Oceanography, 23, 174–178.

    Article  CAS  Google Scholar 

  • Brown, A. C., & McLachlan, A. (1990). Ecology of sandy shores. Elsevier, Amsterdam, Netherlands.

    Google Scholar 

  • Chou, L. M., Yu, J. Y., & Loh, T. L. (2004). Impacts of sedimentation on soft-bottom benthic communities in the southern islands of Singapore. Hydrobiologia, 515, 91–106.

    Article  Google Scholar 

  • Ciardi, C., & Nannipieri, P. (1990). A comparison of methods for measuring ATP in soil. Soil Biology and Biochemistry, 22, 725–727.

    Article  CAS  Google Scholar 

  • Danovaro, R., Fabiano, M., & Della Croce, N. (1993). Labile organic matter and microbial biomasses in deep-sea sediments (E Mediterranean Sea). Deep-Sea Research, 40, 953–965.

    Article  CAS  Google Scholar 

  • Davies, J. L. (1972). Geographic variation in coastal development. Longmans, London.

    Google Scholar 

  • Defeo, O., McLachlan, A., & Schoeman, D. S., et al. (2009). Threats to sandy beach ecosystems: A review. Estuarine, Coastal and Shelf Science, 81, 1–12.

    Article  Google Scholar 

  • Dell’Anno, A., Fabiano, M., Mei, M. L., & Danovaro, R. (2000). Enzymatically hydrolysed protein and carbohydrate pools in deep-sea sediments: Estimates of the potentially bioavailable fraction and methodological considerations. Marine Ecology Progress Series, 196, 15–23.

    Article  Google Scholar 

  • Deming, J. W., & Colwell, R. R. (1982). Barophilic bacteria associated wih digestive tracts of abyssal holothurians. Applied and Environmental Microbiology, 44, 1222–l230.

    CAS  Google Scholar 

  • Fabiano, M., & Danovaro, R. (1994). Composition of organic matter in the sediments facing a river estuary (Tyrrhenian Sea): Relationships with bacteria and microphytobenthic biomass. Hydrobiologia, 277, 71–84.

    Article  CAS  Google Scholar 

  • Fabiano, M., Danovaro, R., & Fraschetti, S. (1995). A three-year time series of elemental and biochemical composition of organic matter in subtidal sandy sediments of the Ligurian Sea (northwestern Mediterranean). Continental Shelf Research, 15, 1453–1469.

    Article  Google Scholar 

  • Fernandes, C. E. G., De Souza, M. J. B. D., Nair, S., & Loka Bharathi, P. A. (2005). Response of sedimentary nucleic acids to benthic disturbance in the Central Indian Basin. Marine Georesources and Geotechnology, 23, 289–297.

    Article  CAS  Google Scholar 

  • Fichez, R. (1991). Composition and fate of organic matter in submarine cave sediments; implications for the biogeochemical cycle of organic carbon. Oceanologica Acta, 14, 369–377.

    CAS  Google Scholar 

  • Findlay, R. H., Trexler, M. B., Guckert, J. B., & White, D. C. (1990). Laboratory study of disturbance in marine sediments: Response of a microbial community. Marine Ecology Progress Series, 62, 121–133.

    Article  Google Scholar 

  • Hertenberger, G., Zamnach, P., & Bachmann, G. (2002). Plant species affect the concentration of free sugars and free amino acids in different types of soil. Journal of Plant and Natural Soil Science, 165, 557–565.

    Article  CAS  Google Scholar 

  • Hilton, M. J., & Hesp, P. (1996). Determining the limits of beach-nearshore sand systems and the impact of offshore coastal sand mining. Journal of Coastal Research, 12(2), 496–519.

    Google Scholar 

  • Hobbie, J. E., Daley, R. J., & Jasper, S. (1977). Use of Nuclepore filters for counting bacteria by fluorescence microscopy. Applied and Environmental Microbiology, 33, 1225–1228.

    CAS  Google Scholar 

  • Holm-Hansen, O., & Booth, C. R. (1966). The measurement of adenosine triphosphate in the ocean and its ecological significance. Limnology and Oceanography, 11, 510–519.

    Article  CAS  Google Scholar 

  • Jędrzejczak, M. F. (2002). Stranded Zostera marina L. vs wrack fauna community interactions on a Baltic sandy beach (Hel, Poland): A short term pilot study. Part I. Droftlone effects of fragmented detritivory, leaching and decay rates. Oceanologia, 44(2), 273–286.

    Google Scholar 

  • Jędrzejczak, M. F. (2004). The modern tourist’s perception of the beach: Is the sandy beach a place of conflict between tourism and biodiversity? In G. Schernewski, & N. Löser (Eds.), Managing the Baltic Sea (pp. S. 109–119). Coastline Reports 2.

  • Joux, F., & LeBaron, P. (1997). Ecological implications of an improved direct viable count method for aquatic bacteria. Applied and Environmental Microbiology, 63, 3643–3647.

    CAS  Google Scholar 

  • Kaneko, S., Ogawa, T. K., & Fukushima, T. (1995). Preliminary results of meiofauna and bacteria abundance in an environmental impact experiment. In The Proceedings of the I ISOPE Ocean Mining Symposium (pp. 181–186).

  • Karl, D. M., & LaRock, P. A. (1975). Adenosine triphosphate measurements in soil and marine sediments. Journal of Fishery Resource Board Canada, 32, 599–607.

    Article  CAS  Google Scholar 

  • Knox, G. A. (2001). Soft shores. In M. J. Kennish (Ed.), The Ecology of seashores. Boca Raton: CRC, LLC.

    Google Scholar 

  • Kochert, G. (1978). Carbohydrate determination by phenol–sulfuric acid method. In J. A. Hellebust, J. S., Craige (Eds.), Handbook Of Phycological Methods—Physiological and Biochemical methods. Cambridge: Cambridge University Press.

    Google Scholar 

  • Kogure, K., Simidu, U., & Taga, N. (1979). A tentative direct microscopic count for counting living marine bacteria. Canadian Journal of Microbiology, 25, 415–420.

    Article  CAS  Google Scholar 

  • Kudrass, H. R. (1999). Marine placer deposits and sea-level changes In D.S. Cronan (Ed.), Handbook of marine mineral deposits. Washington, D.C: CRC.

    Google Scholar 

  • Langezaal, A. M., Ernst, S. R., Haese, R. R., van Bergen, P. F., & van der Zwaan, G. J. (2003). Disturbance of intertidal sediments: The response of bacteria and foraminifera. Estuarine and Coastal Shelf Science, 58, 249–264.

    Article  CAS  Google Scholar 

  • Lee, M. R., & Correa, J. A. (2005). Effects of copper mine tailings disposal on littoral meiofaunal assemblages in the Atacama region of northern Chile. Marine Environmental Research, 59, 1–18.

    Article  CAS  Google Scholar 

  • Loka Bharathi, P. A., & Nair, S. (2005). Rise of the dormant: Simulated disturbance improves culturable abundance, diversity, and functions of Deep-Sea bacteria of Central Indian Ocean Basin. Marine Georesources and Geotechnology, 23, 419–428.

    Article  Google Scholar 

  • Loka Bharathi, P. A., Nair, S., DeSouza, M. J. B. D., & Chandramohan, D. (1999). Truce with oxygen—Anaerobiosis outcompete aerobiosis in the Antarctic lacustrine bacteria. Current Science, 76, 1585–1587.

    Google Scholar 

  • Lowry, O. H., Rosenbrough, N. J., Farr, A. L., & Randall, K. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biology and Chemistry, 193, 265–275.

    CAS  Google Scholar 

  • Luna, G. M., Manini, E., & Danovaro, R. (2002). Large fraction of dead and inactive bacteria in coastal marine sediments: Comparison of protocols for determination and ecological significance. Applied and Environmental Microbiology, 68(7), 3509–3513.

    Article  CAS  Google Scholar 

  • McCarthy, C. M., & Murray, L. (1996). Viability and metabolic features of bacteria indigenous to a contaminated deep aquifer. Microbial Ecology, 32, 305–321.

    Article  CAS  Google Scholar 

  • Nair, S., Mohandass, C., LokaBharathi, P. A., & Raghukumar, C. (2000). Microscale response of sediment variables to benthic disturbance in the Central Indian Ocean Basin. Marine Georesources and Geotechnology, 18, 273–278.

    Article  Google Scholar 

  • Pangburn, S. J., Hall, M. S., & Leach, F. R. (1994). Improvements in the extraction of bacterial ATP from soil with field application. Journal of Microbiological Methods, 20, 197–209.

    Article  CAS  Google Scholar 

  • Parsons, T. R., Maita, Y., & Lalli, C. H. (1984). A manual of chemical and biological methods for seawater analysis. Pergamon, Oxford.

    Google Scholar 

  • Reichgott, M., & Stevenson, L. H. (1978). Microbiological and physical properties of salt marsh and microecosystem sediments. Applied and Environmental Microbiology, 36(5), 662–667.

    CAS  Google Scholar 

  • Roszak, D. B., & Colwell, R. R. (1987a). Metabolic activity of bacterial cells enumerated by direct viable count. Applied and Environmental Microbiology, 53(12), 2889–2983.

    CAS  Google Scholar 

  • Roszak, D. B., & Colwell, R. R. (1987b). Survival strategies of bacteria in the natural environment. Microbiological Reviews, 51(3), 365–379.

    CAS  Google Scholar 

  • Siddiquie, H. N., & Rajamanickam, G. V. (1979). Surficial mineral deposits of the continental shelf of India. BRGM Documents, 7, 233–258.

    Google Scholar 

  • Siddiquie, H. N., Gujar, A. R., Hashimi, N. H., & Valsangkar, A. B. (1984). Superficial deposits of the Indian Ocean. Deep-Sea Research, 31, 763–812.

    Article  CAS  Google Scholar 

  • Simmons, R. E. (2005). Declining coastal avifauna at a diamond mining site in Namibia: Comparisons and causes. Ostrich, 76, 97–103.

    Article  Google Scholar 

  • Stevenson, L. H. (1978). A case of bacterial dormancy in aquatic systems. Microbial Ecology, 4, 127–133.

    Article  Google Scholar 

  • Stoeck, T., Duineveld, G. C. A., Kok, A., & Albers, B. P. (2000). Nucleic acids and ATP to assess microbial biomass and activity in a marine biosedimentary system. Marine Biology, 137, 1111–1123.

    Article  CAS  Google Scholar 

  • Torsvik, V., Sorheim, R., & Goksoyr, J. (1996). Total bacterial diversity in soil and sediment communities—a review. Journal of Industrial Microbiology, 17, 170–178.

    Article  CAS  Google Scholar 

  • Vosjan, J. H., Nieuwland, G., Ernst, W., & Bluszcz, T. (1987). Shipboard comparison of two methods of extraction and measurements of ATP applied to Antarctic water samples. Netherlands Journal of Sea Research, 21, 107–112.

    Article  CAS  Google Scholar 

  • Webster, J. J., Hampton, G. J., & Leach, F. R. (1984). ATP in soil: A new extractant and extraction procedure. Soil Biology and Biochemistry, 16, 335–342.

    Article  CAS  Google Scholar 

  • White, D. C., Phelps, T. J., & Onstott, T. C. (1998). What’s up down there? Current Opinion in Microbiology, 1, 286–290.

    Article  CAS  Google Scholar 

  • Xu, H. S., Roberts, N., Singleton, F. L., Attwell, R.W., Grimes, D. J., & Colwell, R. R. (1982), Survival and viability of non-culturable Escherichia coli and Vibrio cholerae in the estuarine and marine environment. Microbial Ecology, 8, 313–323.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Loka Bharathi.

Additional information

This is NIO contribution number: 4978.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernandes, C.E.G., Das, A., Nath, B.N. et al. Mixed response in bacterial and biochemical variables to simulated sand mining in placer-rich beach sediments, Ratnagiri, West coast of India. Environ Monit Assess 184, 2677–2689 (2012). https://doi.org/10.1007/s10661-011-2143-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-2143-2

Keywords

Navigation