Environmental Monitoring and Assessment

, Volume 184, Issue 4, pp 1891–1907 | Cite as

Influence of coal-based thermal power plants on the spatial–temporal variability of tropospheric NO 2 column over India

  • Anup K. PrasadEmail author
  • Ramesh P. Singh
  • Menas Kafatos


The oxides of nitrogen—NO x (NO and NO2)—are an important constituent of the troposphere. The availability of relatively higher spatial (0.25° grid) and temporal (daily) resolution data from ozone monitoring instrument (OMI) onboard Aura helps us to better differentiate between the point sources such as thermal power plants from large cities and rural areas compared to previous sensors. The annual and seasonal (summer and winter) distributions shows very high mean tropospheric NO2 in specific pockets over India especially over the Indo-Gangetic plains (up to 14.2 × 1015 molecules/cm2). These pockets correspond with the known locations of major thermal power plants. The tropospheric NO2 over India show a large seasonal variability that is also observed in the ground NO2 data. The multiple regression analysis show that the influence of a unit of power plant (in gigawatts) over tropospheric NO2 (×1015 molecules/cm2) is around ten times compared to a unit of population (in millions) over India. The OMI data show that the NO2 increases by 0.794 ± 0.12 (×1015 molecules/cm2; annual) per GW compared to a previous estimate of 0.014 (×1015 molecules/cm2) over India. The increase of tropospheric NO2 per gigawatt is found to be 1.088 ± 0.18, 0.898 ± 0.14, and 0.395 ± 0.13 (×1015 molecules/cm2) during winter, summer, and monsoon seasons, respectively. The strong seasonal variation is attributed to the enhancement or suppression of NO2 due to various controlling factors which is discussed here. The recent increasing trend (2005–2007) over rural thermal power plants pockets like Agori and Korba is due to recent large capacity additions in these regions.


NO2 OMI Thermal power plants India 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acarreta, J. R., de Haan, J. F., & Stammes, P. (2004). Cloud pressure retrieval using the O2–O2 absorption band at 477 nm. Journal of Geophysical Research, 109, D05204. doi: 10.1029/2003JD003915.CrossRefGoogle Scholar
  2. Beig, G., & Brasseur, G. P. (2006). Influence of anthropogenic emissions on tropospheric ozone and its precursors over the Indian tropical region during a monsoon. Geophysical Research Letters, 33, L07808. doi: 10.1029/2005GL024949.CrossRefGoogle Scholar
  3. Beig, G., Gunthe, S., & Jadhav, D. (2007). Simultaneous measurements of ozone and its precursors on a diurnal scale at a semi urban site in India. Journal of Atmospheric Chemistry, 57(3), 239–253 (15).CrossRefGoogle Scholar
  4. Boersma, K. F., et al. (2007). Near-real time retrieval of tropospheric NO2 from OMI. Atmospheric Chemistry Physics, 7, 2103B2118.CrossRefGoogle Scholar
  5. Boersma, K. F., Eskes, H. J., & Brinksma, E. J. (2004). Error analysis for tropospheric NO2 retrieval from space. Journal of Geophysical Research, 109, D04311. doi: 10.1029/2003JD003962.CrossRefGoogle Scholar
  6. Boersma, K. F., Jacob, D. J., Eskes, H. J., Pinder, R. W., Wang, J., & van der A, R. J. (2008). Intercomparison of SCIAMACHY and OMI tropospheric NO2 columns: Observing the diurnal evolution of chemistry and emissions from space. Journal of Geophysical Research, 113, D16S26. doi: 10.1029/2007JD008816.CrossRefGoogle Scholar
  7. Brasseur, G. P., et al. (2006). Impact of climate change on the future chemical composition of the global troposphere. Journal of Climate, 19, 3932–3951.CrossRefGoogle Scholar
  8. Bucsela, E. J., Celarier, E. A., Wenig, M. O., Gleason, J. F., Veefkind, J. P., Boersma, K. F., et al. (2006). Algorithm for NO2 vertical column retrieval from the ozone monitoring instrument. IEEE Transactions on Geoscience and Remote Sensing, 44(5), 1245–1258. Special Issue on the EOS Aura Mission.CrossRefGoogle Scholar
  9. Bucsela, E. J., Perring, A. E., Cohen, R. C., Boersma, K. F., Celarier, E. A., Gleason, J. F., et al. (2008). Comparison of tropospheric NO2 from in-situ aircraft measurements with near-real time and standard product data from OMI. Journal of Geophysical Research, 113, D16S31. doi: 10.1029/2007JD008838.CrossRefGoogle Scholar
  10. Celarier, E. A., et al. (2008). Validation of ozone monitoring instrument nitrogen dioxide columns. Journal of Geophysical Research, 113, D15S15. doi: 10.1029/2007JD008908.CrossRefGoogle Scholar
  11. Chakraborty, N., Mukherjee, I., Santra, A. K., Chowdhury, S., Chakraborty, S., Bhattacharya, S., et al. (2008). Measurement of CO2, CO, SO2, and NO emissions from coal-based thermal power plants in India. Atmospheric Environment, 42, 1073B1082.CrossRefGoogle Scholar
  12. Choudhury, S., Rajpal, H., Saraf, A. K., et al. (2007). Mapping and forecasting of North Indian winter fog: An application of spatial technologies. International Journal of Remote Sensing, 28(16), 3649–3663.CrossRefGoogle Scholar
  13. CIESIN (2007). Center for International Earth Science Information Network Columbia University; United Nations Food and Agriculture Programme (FAO); and Centro Internacional de Agricultura Tropical (CIAT). 2005. Gridded Population of the World: Future Estimates (GPWFE). Palisades, NY: Socioeconomic Data and Applications Center (SEDAC), Columbia University. Available at Scholar
  14. CPCB (2000). Central Pollution Control Board, 2000. Air quality status and trends in India. National Ambient Air Quality Monitoring Series, NAAQMS/14/1999B2000.Google Scholar
  15. Fagbeja, M. A., Chatterton, T. J., Longhurst, J. W. S., et al. (2008). Air pollution and management in the Niger Delta—Emerging issues, Conference Information: 16th International Conference on Modelling, Monitoring and Management of Air Pollution, Date: SEP, 2008 WessexInstTechnolSkiathos GREECE. Air Pollution, XVI, 116, 207–216.CrossRefGoogle Scholar
  16. Frost, G. J., et al. (2006). Effects of changing power plant NOx emissions on ozone in the eastern United States: Proof of concept. Journal of Geophysical Research, 111, D12306. doi: 10.1029/2005JD006354.CrossRefGoogle Scholar
  17. Garg, A., Shukla, P. R., Bhattacharya, S., & Dadhwal, V. K. (2001). Subregion (district) and sector level SO2 and NOX emissions for India: Assessment of inventories and mitigation flexibility. Atmospheric Environment, 35, 703B 713. doi: 10.1016/S1352-2310(00)00316-2.Google Scholar
  18. Ghude, S. D., Fadnavis, S., Beig, G., Polade, S. D., & van der A, R. J. (2008). Detection of surface emission hot spots, trends, and seasonal cycle from satellite-retrieved NO2 over India. Journal of Geophysical Research, 113, D20305. doi: 10.1029/2007JD009615.CrossRefGoogle Scholar
  19. Hameed, S., et al. (2000). On the widespread winter fog in northeastern Pakistan and India. Geophysical Research Letters, 27(13), 1891B1894.CrossRefGoogle Scholar
  20. Jaegle, L., Steinberger, L., Martin, R. V., & Chance, K. (2005). Global partitioning of NOx sources using satellite observations: Relative roles of fossil fuel combustion, biomass burning and soil emissions. Faraday Discussions, 130, 407B–423B. doi: 10.1039/b502128f.CrossRefGoogle Scholar
  21. Jamil, S., Abhilash, P. C., Singh, A., Singh, N., & Behl, H. M. (2009). Fly ash trapping and metal accumulating capacity of plants: Implication for green belt around thermal power plants. Landscape And Urban Planning, 92(2),136–147.CrossRefGoogle Scholar
  22. Kim, S.-W., Heckel, A., McKeen, S. A., Frost, G. J., Hsie, E.-Y., Trainer, M. K., et al. (2006). Satellite observed U.S. power plant NOx emission reductions and their impact on air quality. Geophysical Research Letters, 33, L22812. doi: 10.1029/2006GL027749.CrossRefGoogle Scholar
  23. Kunhikrishnan, T., Lawrence, M. G., von Kuhlmann, R., Richter, A., Ladstätter-Weißenmayer, A., & Burrows, J. P. (2004). Analysis of tropospheric NOx over Asia using the model of atmospheric transport and chemistry (MATCH-MPIC) and GOME-satellite observations. Atmospheric Environment, 38, 581B596.CrossRefGoogle Scholar
  24. Kunhikrishnan, T., Lawrence, M. G., von Kuhlmann, R., Wenig, M. O., Asman, W. A. H., Richter, A., et al. (2006). Regional NOx emission strength for the Indian subcontinent and the impact of emissions from India and neighboring countries on regional O3 chemistry. Journal of Geophysical Research, 111, D15301. doi: 10.1029/2005JD006036.CrossRefGoogle Scholar
  25. Lamsal, L. N., Martin, R. V., van Donkelaar, A., Celarier, E. A., Bucsela, E. J., Boersma, K. F., et al. (2010). Indirect validation of tropospheric nitrogen dioxide retrieved from the OMI satellite instrument: Insight into the seasonal variation of nitrogen oxides at northern midlatitudes. Journal of Geophysical Research-Atm, 115, D05302.CrossRefGoogle Scholar
  26. Lamsal, L. N., Martin, R. V., van Donkelaar, A., Steinbacher, M., Celarier, E. A., Bucsela, E., et al. (2008). Ground-level nitrogen dioxide concentrations inferred from the satellite-borne ozone monitoring instrument. Journal of Geophysical Research, 113, D16308. doi: 10.1029/2007JD009235.CrossRefGoogle Scholar
  27. Levelt, P. F., et al. (2006). Science objectives of the ozone monitoring instrument. IEEE Transactions on Geoscience and Remote Sensing, 44(5), 1199B1208.Google Scholar
  28. Lin, J.-T., McElroy, M. B., & Boersma, K. F. (2009). Constraint of anthropogenic NOx emissions in China from different sectors: A new methodology using multiple satellite retrievals. Atmospheric Chemistry Physics Discussion, 9, 19205–19241.CrossRefGoogle Scholar
  29. Ludwig, J., Meixner, F. X., Vogel, B., & Förster, J. (2001). Soil–air exchange of nitric oxide: An overview of processes, environmental factors, and modelling studies. Biogeochemistry, 52, 225B–257B.CrossRefGoogle Scholar
  30. Martin, R. V., et al. (2002). An improved retrieval of tropospheric nitrogen dioxide from GOME. Journal of Geophysical Research, 107(D20), 4437. doi: 10.1029/2001JD001027.CrossRefGoogle Scholar
  31. Martin, R. V., Jacob, D. J., Chance, K., Kurosu, T. P., Palmer, P. I., & Evans, M. J. (2003). Global inventory of nitrogen oxide emissions constrained by space-based observations of NO2 columns. Journal of Geophysical Research, 108(D17), 4537. doi: 10.1029/2003JD003453.CrossRefGoogle Scholar
  32. Martin, R. V., Sauvage, B., Folkins, I., Sioris, C. E., Boone, C., Bernath, P., et al. (2007). Space-based constraints on the production of nitric oxide by lightning. Journal of Geophysical Research, 112, D09309. doi: 10.1029/2006JD007831.CrossRefGoogle Scholar
  33. Mijling, B., van der A, R. J., Boersma, K. F., Van Roozendael, M., De Smedt, I., & Kelder, H. M. (2009). Reductions of NO2 detected from space during the 2008 Beijing Olympic Games. Geophysical Research Letters, 36, L13801. doi: 10.1029/2009GL038943.CrossRefGoogle Scholar
  34. Platt, U. (1994). Differential optical absorption spectroscopy (DOAS). In M. Siegrist (Ed.), Air Monitoring by Spectroscopic Techniques. New York: Wiley.Google Scholar
  35. Platt, U., & Stutz, J. (2006). Differential Optical Absorption Spectroscopy (DOAS), Principle and Applications. Heidelberg: Springer.Google Scholar
  36. Prasad, A. K. (2007). Multi-sensor appraisal of aerosols, vegetation and monsoon dynamics over Indian sub-continent. Ph.D. Thesis, Indian Institute of Technology Kanpur, 1–238 (Unpublished).Google Scholar
  37. Prasad, A. K., & Singh, R. P. (2007). Comparison of MISR-MODIS aerosol optical depth over the Indo-Gangetic basin during the winter and summer seasons (2000–2005). Remote Sensing of Environment, 107(1–2), 109–119.CrossRefGoogle Scholar
  38. Prasad, A. K., Singh, R. P., & Singh, A. (2006a). Seasonal climatology of aerosol optical depth over the Indian sub-continent: Trend and departures in recent years. International Journal of Remote Sensing, 27(12), 2323–2329.CrossRefGoogle Scholar
  39. Prasad, A. K., Singh, R. P., & Kafatos, M. (2006b). Influence of coal based thermal power plants on aerosol optical properties in the Indo-Gangetic basin. Geophysical Research Letters, 33, L05805. doi: 10.1029/2005GL023801.CrossRefGoogle Scholar
  40. Ramanathan, V., & Ramana, M. V. (2005). Persistent, widespread, and strongly absorbing haze over the Himalayan foothills and the Indo-Ganges plains. Pure and Applied Geophysics, 162, 1609–1626.CrossRefGoogle Scholar
  41. Richter, A., Burrows, J. P., & Nüß, H., Granier C., Niemeier, U. (2005). Increase in tropospheric nitrogen dioxide over China observed from space. Nature, 437, 129–132. doi: 10.1038/nature04092.CrossRefGoogle Scholar
  42. Saraf, N., & Beig, G. (2004). Long-term trends in tropospheric ozone over the Indian tropical region. Geophysical Research Letters, 31, L05101. doi: 10.1029/2003GL018516.CrossRefGoogle Scholar
  43. Sharma, R. K., Agrawal, M., & Marshall, F. M. (2008). Atmospheric deposition of heavy metals (Cu, Zn, Cd and Pb) in Varanasi City. Environmental Monitoring and Assessment, 142(1–3), 269–278.CrossRefGoogle Scholar
  44. Singh, R. K., & Agrawal, M. (2010). Atmospheric depositions around a heavily industrialized area in a seasonally dry tropical environment of India. Environmental Pollution, 138(1), 142–152.CrossRefGoogle Scholar
  45. Sitnov, S. (2009). Analysis of spatial–temporal variability of tropospheric NO2 column over Moscow megapolis using OMI spectrometer (Aura satellite) data. Doklady Earth Sciences, 429(2), 1511–1517.CrossRefGoogle Scholar
  46. Tie, X., Zhang, R., Brasseur, G., Emmons, L., & Lei, W. (2001). Effects of lightning on reactive nitrogen and nitrogen reservoir species in the troposphere. Journal of Geophysical Research, 106(D3), 3167B–3178B.CrossRefGoogle Scholar
  47. van Aardenne, J. A., Carmichael, G. R., Levy, H. II, Streets, D., & Hordijk, L. (1999). Anthropogenic NOx emissions in Asia in the period 1990 B 2002. Atmospheric Environment, 33, 633B–646B.CrossRefGoogle Scholar
  48. van der A, R. J., Eskes, H. J., Boersma, K. F., van Noije, T. P. C., Van Roozendael, M., De Smedt, I., et al. (2008). Trends, seasonal variability and dominant NOx source derived from a ten year record of NO2 measured from space. Journal of Geophysical Research, 113, D04302. doi: 10.1029/2007JD009021.CrossRefGoogle Scholar
  49. van der A, R. J., Peters, D. H. M. U., Eskes, H. J., Boersma, K. F., Van Roozendael, M., De Smedt, I., et al. (2006). Detection of the trend and seasonal variation in tropospheric NO2 over China. Journal of Geophysical Research, 111, D12317. doi: 10.1029/2005JD006594.CrossRefGoogle Scholar
  50. Vidot, J., Jourdan, O., Kokhanosvky, A. A., Szczap, F., Giraud, V., & Rozanov, V. V. (2010). Retrieval of tropospheric NO2 columns from satellite measurements in presence of cirrus: A theoretical sensitivity study using SCIATRAN and prospect application for the A-Train. Journal of Quantitative Spectroscopy and Radiative Transfer, 111(4), 586–601.CrossRefGoogle Scholar
  51. Wenig, M. O., Cede, A. M., Bucsela, E. J., Celarier, E. A., Boersma, K. F., Veefkind, J. P., et al. (2008). Validation of OMI tropospheric NO2 column densities using direct-Sun mode Brewer measurements at NASA Goddard Space Flight Center. Journal of Geophysical Research, 113, D16S45. doi: 10.1029/2007JD008988.CrossRefGoogle Scholar
  52. Zyrichidou, I., Koukouli, M. E., Balis, D. S., et al. (2009). Satellite observations and model simulations of tropospheric NO2 columns over south-eastern Europe. Atmospheric Chemistry and Physics, 9(16), 6119–6134.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Anup K. Prasad
    • 1
    • 2
    Email author
  • Ramesh P. Singh
    • 1
    • 2
  • Menas Kafatos
    • 1
    • 2
  1. 1.School of Earth and Environmental Sciences, Schmid College of ScienceChapman UniversityOrangeUSA
  2. 2.Center of Excellence in Earth ObservingChapman UniversityOrangeUSA

Personalised recommendations