Skip to main content
Log in

Heavy metal biomonitoring and phytoremediation potentialities of aquatic macrophytes in River Nile

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The concentrations of Cd, Cu, Pb, and Zn in sediments, water, and different plant organs of six aquatic vascular plant species, Ceratophyllum demersum L. Echinochloa pyramidalis (Lam.) Hitchc. & Chase; Eichhornia crassipes (Mart.) Solms-Laub; Myriophyllum spicatum L.; Phragmites australis (Cav.) Trin. ex Steud; and Typha domingensis (Pers.) Poir. ex Steud, growing naturally in the Nile system (Sohag Governorate), were investigated. The aim was to define which species and which plant organs exhibit the greatest accumulation and evaluate whether these species could be usefully employed in biomonitoring and phytoremediation programs. The recorded metals in water samples were above the standard levels of both US Environmental Protection Agency and Egyptian Environmental Affairs Agency except for Pb. The concentrations of heavy metals in water, sediments, and plants possess the same trend: Zn > Cu > Pb > Cd which reflects the biomonitoring potentialities of the investigated plant species. Generally, the variation of heavy element concentrations in water and sediments in relation to site and season, as assessed by two-way repeated measured ANOVA, was significant (p < 0.05). However, insignificant variations were observed in the concentrations of Pb and Cd in sediments in relation to season and of Cu and Zn in relation to site. Results also showed that the selectivity of the heavy elements for the investigated plants varied significantly (p < 0.05) with species variation. The accumulation capability of the investigated species could be arranged according to this pattern: C. demersum > E. crassipes > M. spicatum > E. pyramidalis > T. domingensis > P. australis. On the basis of the element concentrations, roots of all the studied species contain higher concentrations of Cu and Zn than shoots while leaves usually acquire the highest concentrations of Pb. Cd concentrations among different plant organs are comparable except in M. spicatum where the highest Cd concentrations were recorded in the leaves. Our results also demonstrated that all the studied species can accumulate more than 1,450-fold the concentration of the investigated heavy elements in water rendering them of interest for use in phytoremediation studies of polluted waters. Given the absence of systematic water quality monitoring, heavy elements in plants, rather than sediments, provide a cost-effective means for assessing heavy element accumulation in aquatic systems during plant organ lifespan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abd El-Hady, B. A. (2007). Compare the effect of polluted and River Nile irrigation water on contents of heavy metals of some soils and plants. Research Journal of Agriculture and Biological Sciences, 3(4), 287–294.

    CAS  Google Scholar 

  • Abd-El-Fattah, A., Shehata, S. M., & Talab, A. S. (2002). Evaluation of irrigation with either raw municipal sewage river water on element uptake and yield of lettuce and potato plants. Egyptian Journal of Soil Sciences, 42(4), 705–714.

    Google Scholar 

  • Abdel-Sabour, M. F., & Rabie, F. H. (2003). Accumulation of heavy metals in vegetable plants grown in mostorod area. Egyptian Journal of Soil Sciences, 43(1), 63–76.

    CAS  Google Scholar 

  • Abdel-Sabour, M. F., Ismail, A. S., & Abou Naga, H. (1996). Environmental impact of Cairo sewage effluent on El-Gabal El-Asfer farm. Egyptian Journal of Soil Sciences, 36(1–4), 329–342.

    Google Scholar 

  • Abdel-Satar, A. M. (1994). Studies on some environmental factors affecting the distribution of some chemical elements and productivity of River Nile at El-Kanater El-Khyria. M. Sc. Thesis, Fac. Sci. Cairo Unive., Egypt.

  • Abdel-Shafy, H. I., & Aly, R. O. (2002). Water issue in Egypt: Resources. Pollution and Protection Endeavors CEJOEM, 8(1), 3–21.

    Google Scholar 

  • Abou El-Atta, A. A. (1978). Egypt and Nile after High Dam. A report Jan: Ministry of Irrigation and Land Reclamation, Egypt. 145p.

  • Aboulroos, S. A., Holah, Sh Sh, & Badawy, S. H. (1996). Background levels of some heavy metals in soils and corn in Egypt. Egyptian Journal of Soil Sciences, 36(1–4), 83–97.

    CAS  Google Scholar 

  • Allen, S. E. (1989). Chemical Analysis of Ecological Materials (2nd ed.). Oxford: Blackwell.

    Google Scholar 

  • APHA (1995). Standard Methods for the Examination of Water and Wastewater (19th ed.). New York: American Public Health Association.

    Google Scholar 

  • APRP (Agricultural Policy Reform Program) (2002). Survey of Nile system pollution sources: Report No. 64. United States Agency for International Development/Egypt.

  • Baudo, R., Galanti, G., Guilizzoni, P., & Varini, P. (1981). Relationship between heavy metals and aquatic organism in Lake Mezzola hydrographic system (Northern Itlay): Metal concentration in six submerged aquatic macrophytes. Mem Ist Ital Idrobiol, 39, 203–225.

    CAS  Google Scholar 

  • Borkert, C. M., Cox, F. R., & Tucker, M. R. (1998). Zinc and copper toxicity in peanut, soybean, rice and corn in soil mixtures. Communications in Soil Sciences and Plant Analysis, 29, 2991–3005.

    Article  CAS  Google Scholar 

  • Boulos, L. (2005). Flora of Egypt, vol. 4 (1st ed.). Cairo, Egypt: Al Hadara.

    Google Scholar 

  • Cardwell, A., Hawker, D., & Greenway, M. (2002). Metal accumulation in aquatic macrophytes from southeast Queensland, Australia. Chemosphere, 48, 653–663.

    Article  CAS  Google Scholar 

  • Chakravarty, P., SenSarma, N., & Sarma, H. P. (2010). Biosorption of cadmium (II) from aqueous solution using heartwood powder of Areca catechu. Chemical Engineering Journal, 162, 949–955.

    Article  CAS  Google Scholar 

  • Chandra, P., & Kulshreshtha, K. (2004). Chromium accumulation and toxicity in aquatic vascular plants. Botanical Review, 70(3), 313–327.

    Article  Google Scholar 

  • Chapman, D. (1996). Water Quality Assessments—A Guide to Use of Biota, Sediments and Water in Environmental Monitoring. Cambridge University Press, Great Britain. 2nd ed., UNESCO/WHO/UNEP.

  • Chen, S. B., Zhu, Y. G., & Ma, Y. B. (2006). The effects of grain size of rock phosphate amendment on metal immobilization in contaminated soils. Journal of Hazardous Material, 134, 74–79.

    Article  CAS  Google Scholar 

  • Clark, B. G., Harvey D. G., & Humphrey, D. J. (1981). Veterinary Toxicology, 2nd ed. London, p. 238.

  • Committee for Fisheries (1993). List of maximum allowable concentrations and approximately harmless levels of impact of toxic chemicals on water bodies of fisheries importance. Moscow: Kolos.

    Google Scholar 

  • Cosstley, S. C., & Wallis, F. M. (2001). Treatment of heavy metal polluted water using the biofilm of a multistage rotating biological contractor. World Journal Microbiological Biotechnological, 17, 71–78.

    Article  Google Scholar 

  • Deng, H., Ye, Z. H., & Wong, M. H. (2004). Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal contaminated sites in China. Environmental Pollution, 132, 29–40.

    Article  CAS  Google Scholar 

  • DEWAS (Deutsche Einheitsverfahren zur Wasser-, Abwasser-, und Schlammuntersu-chung) (1980). Weinheim, Germany: Chemie.

  • Dewis, J., & Freitas, F. (1970). In Physical and chemical methods of soil and water analysis. Soil Bulletin, No. 10: Food and Agriculture Organization of the United Nations, Rome.

  • EEAA (2008). Egyptian Environmental Affairs Agency Annual Report, p. 360.

  • Elewa, A. A., Shehata, M. B., & Abdo, M. H. (2001). Effect of thermal pollution of Shoubra El-Kheima Electric Station on the River Nile water quality. The Second International Conference and Exhibition for Life and Environment. 3–5, April.

  • El-Gendi, S. A. M. (2003). Speciation of some of heavy metals in some waters of Egypt. Egyptian Journal of Soil Sciences, 43(2), 211–221.

    CAS  Google Scholar 

  • El-Naim, M. A., & El-Houseini, M. (2002). Environmental aspects of sewage sludge application in Egypt. 17th WCSS, 14–21 August, No. 50, Thailand.

  • El-Rayis, O. A., & El-Sabrouti, M. (1997). Lake Mariut: Pollution problems and proposals for restoration. Fresenius’ Environmental Bulletin, 6, 598–604.

    CAS  Google Scholar 

  • Environment Canada (1987). Canadian Water Quality Guidelines. Environment Canada, Ottawa: Prepared by the Task Force on Water Quality Guidelines of the Canadian Council of Resource Ministers.

  • EPA (1997). Office of Water, Volunteer Stream Monitoring: A Methods Manual. EPA 841-B-97–0034503F.

  • EPA (2006). National Recommended Water Quality Criteria. Washington, DC: Office of Water.

    Google Scholar 

  • Fawzy, M. A., & Badr, N. B. E. (2006). Assessment of heavy metals accumulation capability of four aquatic plants in lake Mariut, Egypt. EST, 2nd International Conference of Environmental Sciences and Technology Vol. (I) (pp. 249–257). Houston: American Science.

    Google Scholar 

  • Figueira, R., & Ribeiro, T. (2005). Transplants of aquatic mosses as biosorbent of metals released by a mine Zuent. Environmental Pollution, 136, 293–301.

    Article  CAS  Google Scholar 

  • Friberg, L., Nordberg, G. R., & Vouk, V. B. (Eds.). (1986). Handbook on the toxicology of metals, 2nd ed. New York, NY: Elsevier.

    Google Scholar 

  • Ghallab, M. H. M. (2000). Some physical and chemical changes on River Nile down stream of Delta Barrage at El-Rahawy drain. M. Sc. Thesis Fac. Sci. Ain Shams Univ., Cairo, Egypt.

  • Gohar, M. A. (1998). Factors affecting the precipitation and dissolution of some chemical elements in River Nile at Damietta branch. M. Sc. Thesis Fac. Sci. Menofia Univ., Egypt.

  • Gower, A. M. (1980). Water quality in catchments ecosystems. New York: Wiley.

    Google Scholar 

  • Gray, N. F. (1994). Drinking water quality. John Wiley and Sons, Chichester: Problems and solutions, p. 315.

  • Guilizzoni, P. (1991). The role of heavy metals and toxic materials in the physiological ecology of submerged macrophytes. Aquatic Botany, 41, 87–109.

    Article  CAS  Google Scholar 

  • Gupta, M., & Chandra, P. (1994). Lead contamination in Vallisnaria spiralis and Hydrilla verticillata (l.f.) Royle. Journal of Environmental Sciences and Health, 29, 503–516.

    Article  Google Scholar 

  • Gupta, M., & Chandra, P. (1998). Bioaccumulation and toxicity of mercury in rooted submerged macrophyte Vallisneria spiralis. Environmental Pollution, 103, 327–332.

    Article  CAS  Google Scholar 

  • Harrison, M. R. & De Mora, J. D. (1996). Introductory chemistry for environmental science. Cambridge University Press, p. 301.

  • Hong-yun, P., Xiao-e, Y., & Sheng-ke, T. (2005). Accumulation and ultrastructural distribution of copper in Elsholtzia splendens. Journal of Zhejiang University Science A, 6B, 311–318.

    Article  Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (1992). Trace elements in soils and plants (2nd ed.). Boca Raton: CRC.

    Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (2001). Trace elements in soils and plants. Boca Raton: CRC.

    Google Scholar 

  • Kamal, M., Ghaly, A. E., Mahmoud, N., & Coté, R. (2004). Phytoaccumulation of heavy metals by aquatic plants. Environment International, 29, 1029–1039.

    Article  CAS  Google Scholar 

  • Kandil, N. F., Habib, F. M., & Hafez, W. A. (2003). Statistical evaluation of soil and field crops pollution due to different irrigation water qualities. Egyptian Journal of Soil Sciences, 43(1), 77–90.

    CAS  Google Scholar 

  • Khambhaty, Y., Mody, K., Basha, S., & Jha, B. (2009). Biosorption of chromium (VI) onto marine Aspergillus niger: experimental studies and pseudo-second order kinetics. World Journal of Mocrobiology and Biotechnology, 25, 1413–1421.

    Article  CAS  Google Scholar 

  • Kloke, A. (1979). Content of arsenic, cadmium, chromium, fluorine, lead, mercury and nickel in plants grown on contaminated soil, paper presented at United Nations. Wrsow: ECE symp. On effects of airborne pollution on vegetation, 192.

  • Kuyucak, N., & Volesky, B. (1989). Biosorbents for recovery of metals from industrial solutions. Biotechnology Letter- Springer Link Journal, 10, 137–142.

    Google Scholar 

  • Kwaitkowski, R. E., & Roff, J. C. (1976). Effect of acidity on the phyto-plankton and primary productivity of selected northern Ontario Lakes. Canadian Journal of Botany, 54, 2546–2561.

    Article  Google Scholar 

  • Laxen, D. P. H. (1985). Trace metal adsorption/coprecipitation on hydrous ferric under realistic conditions: Role of humic substances. Water Research, 19, 1229–1236.

    Article  CAS  Google Scholar 

  • Levesque, R. (2007). SPSS programming and data management: A guide for SPSS and SAS users, 4th edn. Chicago: SPSS Inc.

    Google Scholar 

  • Long, X. X., Yang, X. E., Ni, W. Z., Ye, Z. Q., He, Z. L., Calvert, D. V., et al. (2003). Assessing zinc thresholds for phytoxicity and potential dietary toxicity in selected vegetable crops. Communications in Soil Sciences and Plant Analysis, 34, 1421–1434.

    Article  CAS  Google Scholar 

  • Maria Adelaid, R. V., Veado, A. H., Oliveria, G., Revel, G., Pinte, S., Aytsult, P., et al. (2000). Study of water and sediment interactions in the Das Velhas River, Brazil-Major and trace elements. ISSN 0378–4738, Water SA, 25(2), 255–274.

    Google Scholar 

  • Mishra, S., Srivastava, S., Tripathi, R. D., Kumar, R., Seth, C. S., & Gupta, D. K. (2006). Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere, 65, 1027–1039.

    Article  CAS  Google Scholar 

  • Mohammed, A. A., Ahmed, A. M., & Zeinab, A. A. (1984). Studies on phytoplankton of the Nile system in Upper Egypt. Bulletin of the Faculty of Science, Assiut University, 13(1), 13–45.

    Google Scholar 

  • Muramoto, S., & Oki, Y. (1983). Removal of some heavy metals from polluted water by water hyacinth (Eichhornia crassipes). Bulletin of Environmental Contamination and Toxicology, 30, 170–177.

    Article  CAS  Google Scholar 

  • Ngayila, N., Basly, J., Lejeune, A., Botineau, M., & Baudu, M. (2007). Myriophyllum alterniflorum DC., biomonitor of metal pollution and water quality. Sorption/accumulation capacities and photosynthetic pigments composition changes after copper and cadmium exposure. The Science of the Total Environment, 373, 564–571.

    Article  CAS  Google Scholar 

  • Nimptsch, J., Wunderlin, D. A., Dollan, A., & Pflugmacher, S. (2005). Antioxidant and biotransformation enzymes in Myriophyllum quitense as biomarkers of heavy metal exposure and eutrophication in Suquía River basin (Córdoba, Argentina). Chemosphere, 261, 147–157.

    Article  Google Scholar 

  • Nor, Y. M. (1994). Phenol removal by Eichhornia crassipes in the presence of trace metals. Water Research, 28, 1161–1166.

    Article  CAS  Google Scholar 

  • O’Halloran, J., Walsh, A. R., & Fitzpatrick, P. J. (1997). The determination of trace elements in biological and environmental samples using atomic absorption spectroscopy. In D. Sheehan (Ed.), Methods in Biotechnology, In: Bioremediation Protocols (vol. 2). New Jersey: Humana Press.

    Google Scholar 

  • Outridge, P. M., & Noller, B. N. (1991). Accumulation of toxic trace elements by freshwater vascular plants. Reviews of Environmental Contamination and Toxicology, 121, 1–63.

    Article  CAS  Google Scholar 

  • Rabie, F., Fawzy, A., Khader, M. Y., & Hussein, W. (1996). Contents of biogenic and nonbiogenic heavy metals in El-Saff soils as related to different pollution sources. Egyptian Journal of Soil Sciences, 36(1–4), 165–177.

    CAS  Google Scholar 

  • Radwan, M., Williams, P., El-Sadek, A., & Barcament, J. (2003). Modeling of dissolved oxygen and biochemical oxygen demand in River Water using detailed and simplified models. International Journal of River Basin Management, 1(2), 97–103.

    Article  Google Scholar 

  • Rai, S., Hasan, S. H., Rupainwar, D. C., & Sharma, Y. C. (1994). Removal of Cd from wastewater by water hyacinth. International Journal of Environmental Studies, 46, 251–256.

    Article  CAS  Google Scholar 

  • Rai, U. N., Sinha, S., Tripathi, R. D., & Chandra, P. (1995). Waste-water treatability potential of some aquatic macrophytes—removal of heavy-metals. Ecological Engineering, 5(1), 5–12.

    Article  Google Scholar 

  • Rashed, I. F., Abd-El-Nabi, M. E., El-Hemely, A., & Khalaf, P. (1995). Background levels of heavy metals in the Nile Delta soils. Egyptian Journal of Soil Sciences, 35(2), 239–252.

    Google Scholar 

  • Saad, M. A. H. (1980). Limnological study on Lake Nasser and the Nile in Egypt. Water Supply Management, 4, 81–92.

    Google Scholar 

  • Sadiq, M. (1992). Forest fire ash impact on micro- and macroalgae in the receiving waters of the east coast of South Kore. Marine Pollution Bulletin, 45, 203–209.

    Google Scholar 

  • Sajwan, K. S., & Ornes, W. H. (1996). Cadmium accumulation in Eurasian watermilfoil plants. Water, Air, and Soil Pollution, 87, 47–56.

    Article  CAS  Google Scholar 

  • Salt, D. E., Smith, R. D., & Raskin, I. (1998). Phytoremediation. Annual review of plant physiology and plant molecular biology, 49, 643–668.

    Article  CAS  Google Scholar 

  • Samaan, A. A. (1974). Primary production in Lake Edku. Bulletin of Institute of Oceanograph and Fisheries Egypt, 4, 261–317.

    Google Scholar 

  • Shaltout, K. H., Galal, T. M., & El-Komi, T. M. (2010). Evaluation of nutrient status of some hydrophytes in the water courses of Nile Delta, Egypt. Ecologia Miditerranea, 36(1), 77–87.

    Google Scholar 

  • Sharma, S. S., & Gaur, J. P. (1995). Potential of Lemna polyrrhiza for removal of heavy metals. Ecological Engineering, 4, 37–43.

    Article  Google Scholar 

  • Soltan, M. E. (1988). Study of River Nile water pollution. M. Sc. Thesis, Fac. Sci. Aswan, South Valley University, Egypt.

  • Sridhar, M. K. C., Olawuyi, J. F., Adogame, L. A., Okekearu, Osajie, C. O. & Linda, A. (2000). Lead in the Nigerian environment: problems and prospects, In J. Nriagu (Ed.), 11th Annual International Conference on Heavy Metals in the Environment. No. University of Michigan, School of Public Health, Ann Arbor, MI.

  • Sundby, B., Vale, C., Cacador, I., & Catarino, F. (1998). Metal-rich concertinos on the roots of salt marsh plants: Mechanism and rate of formation. Limnology and Oceanography, 43, 245–252.

    Article  CAS  Google Scholar 

  • Tebbut, T. H. Y. (1979). A rational approach to water quality control. Water Supply Managment, 3, 41.

    Google Scholar 

  • Vaidyanathan, S., Patterson, L. K., Mobius, D., & Gruniger, H. R. (1985). Effect of monolayer composition and organization on fluorescent behavior. Journal of Physical Chemistry, 89, 491–497.

    Article  CAS  Google Scholar 

  • Velz, C. J. (1984). Applied Stream Sanitation (2nd ed.). New York: Wiley, p. 800.

    Google Scholar 

  • Verma, V. K., Gupta, R. K., & Rai, J. P. N. (2005). Biosorption of Pb and Zn from pulp and paper industry eZuent by water hyacinth (Eichhornia crassipes). Journal of Science and Industrial Research, 64, 778–781.

    CAS  Google Scholar 

  • Wade, T. L., Brooks, J. M., Kennicutt, M. C., McDonald, T. J., Sericano, J. L. & Jackson, T. L. (1993). GERG Trace Metals and Organic Contaminants Analytical Techniques. In G. G. Lauenstein, & A. Y. Cantillo (Eds.), Sampling and Analytical Methods of the National Status and Trend Program. National Benthic Surveillance and Mussel Watch Projects 1984–1992, 121–139. NOAA Technical Memorandum NOS ORCA 71. Silver Spring, MD.

  • Waganov, P. A., & Nizharadze, T. N. (1981). On microelements in the loesslike and cretaceous sediments. Geokhimiya, 1, 149.

    Google Scholar 

  • Wang, X. F., & Zhou, Q. X. (2005). Ecotoxicological effects of cadmium on three ornamental plants. Chemosphere, 60(1), 16–21.

    Article  CAS  Google Scholar 

  • Weis, J. S., & Weis, P. (2004). Metal uptake, transport and release by wetland plants: Implications for phytoremediation and restoration. Environment International, 30, 685–700.

    Article  CAS  Google Scholar 

  • Westfall, D. G., Mortvedt, J. J., Peterson, G. A., & Gangloff, W. J. (2005). Efficient and environmentally safe use of micronutrients in agriculture. Communications in Soil Sciences and Plant Analysis, 36, 169–182.

    Article  CAS  Google Scholar 

  • WHO (1985). Health Hazards from Nitrate in Drinking water. Report on a WHO meeting, Environmental Health Series, No. 1, Copenhagen, 5–9 March 1984. WHO Regional Office for Europe, Copenhagen.

  • WHO (1993). Guidelines for drinking-water quality, vol. 1. Recommendations. 2nd ed. World Health Organization, Geneva, p. 188.

  • WHO (1996). Evaluation of Certain Food Additives and Contaminants: 41st report of the joint FAO/WHO Expert Committee on Food Additives. WHO Technical Report Series, No. 837. World Health Organization, Geneva.

    Google Scholar 

  • Wilson, M. J., & Bell, N. (1996). Acid deposition and heavy metal mobilization. Appllied Geochemistry, 11, 133–137.

    Article  Google Scholar 

  • Woodbury, P. B. (1998). Municipal Solid Waste Composting: Potential Effects of Heavy Metals in Municipal Solid Waste Composts on Plants and the Environment. Boyce Thompson Institute for Plant Research: Cornell University, Ithaca, NY.

  • Zaranyika, M. F., & Ndapwadza, T. (1995). Uptake of Ni, Zn, Fe, Co, Cr, Pb, Cu and Cd by water hyacinth in Mukuvisi and Manyame rivers, Zimbabwe. Journal of Environmental Sciences and Health, 30, 157–169.

    Article  Google Scholar 

  • Zhu, Y. L., Zayed, A. M., Qian, J.-H., de Souza, M., & Terry, N. (1999). Phytoaccumulation of trace elements by wetland plants. Journal of Environmental Quality: Part II. Water hyacinth, 28.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manal Ahmed Fawzy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fawzy, M.A., Badr, N.Es., El-Khatib, A. et al. Heavy metal biomonitoring and phytoremediation potentialities of aquatic macrophytes in River Nile. Environ Monit Assess 184, 1753–1771 (2012). https://doi.org/10.1007/s10661-011-2076-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-2076-9

Keywords

Navigation