Skip to main content
Log in

Improved mapping of National Atmospheric Deposition Program wet-deposition in complex terrain using PRISM-gridded data sets

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

High-elevation regions in the United States lack detailed atmospheric wet-deposition data. The National Atmospheric Deposition Program/National Trends Network (NADP/NTN) measures and reports precipitation amounts and chemical constituent concentration and deposition data for the United States on annual isopleth maps using inverse distance weighted (IDW) interpolation methods. This interpolation for unsampled areas does not account for topographic influences. Therefore, NADP/NTN isopleth maps lack detail and potentially underestimate wet deposition in high-elevation regions. The NADP/NTN wet-deposition maps may be improved using precipitation grids generated by other networks. The Parameter-elevation Regressions on Independent Slopes Model (PRISM) produces digital grids of precipitation estimates from many precipitation-monitoring networks and incorporates influences of topographical and geographical features. Because NADP/NTN ion concentrations do not vary with elevation as much as precipitation depths, PRISM is used with unadjusted NADP/NTN data in this paper to calculate ion wet deposition in complex terrain to yield more accurate and detailed isopleth deposition maps in complex terrain. PRISM precipitation estimates generally exceed NADP/NTN precipitation estimates for coastal and mountainous regions in the western United States. NADP/NTN precipitation estimates generally exceed PRISM precipitation estimates for leeward mountainous regions in Washington, Oregon, and Nevada, where abrupt changes in precipitation depths induced by topography are not depicted by IDW interpolation. PRISM-based deposition estimates for nitrate can exceed NADP/NTN estimates by more than 100% for mountainous regions in the western United States.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Clow, D. W., Ingersoll, G. P., Mast, M. A., Turk, J. T., & Campbell, D. H. (2002). Comparison of snowpack and winter wet-deposition chemistry in the Rocky Mountains, USA—Implications for winter dry deposition. Atmospheric Environment, 36(14), 2337–2348.

    Article  CAS  Google Scholar 

  • Daly, C. (1998). Variable influence of terrain on precipitation patterns—Delineation and use of effective terrain height in PRISM. Oregon State University. http://www.prism.oregonstate.edu/pubv/prism/docs/effectivetevrvravin-daly.pdf. Accessed 01 February 2011.

  • Daly, C. (2006). Guidelines for assessing the suitability of spatial climate data sets. International Journal of Climatology, 26, 707–721.

    Article  Google Scholar 

  • Daly, C., Neilson, R. P., & Phillips, D. L. (1994). A statistical-topographic model for mapping climatological precipitation over mountainous terrain. Journal of Applied Meteorology, 33, 140–158.

    Article  Google Scholar 

  • Daly, C., Taylor, G. H., Gibson, W. P., Parzybok, T. W., Johnson, G. L., & Pasteris, P. (2001). High-quality spatial climate data sets for the United States and beyond. Transactions of the American Society of Agricultural Engineers, 43, 1957–1962.

    Google Scholar 

  • Daly, C., Gibson, W. P., Taylor, G. H., Johnson, G. L., & Pasteris, P. (2002). A knowledge-based approach to the statistical mapping of climate. Climate Research, 22, 99–113.

    Article  Google Scholar 

  • Daly, C., Halbleib, M., Smith, J. I., Gibson, W. P., Dogett, M. K., Taylor, G. H., et al. (2008). Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. International Journal of Climatology, 28, 2031–2064. doi:10.1002/joc.1688.

    Article  Google Scholar 

  • Dettinger, M., Redmond, K., & Cayan, D. (2004). Winter orographic precipitation ratios in the Sierra Nevada—Large-scale atmospheric circulations and hydrologic consequences. Journal of Hydrometeorology, 5(6), 1102–1116.

    Article  Google Scholar 

  • Dore, M. H. I. (2005). Climate change and changes in global precipitation patterns—What do we know? Environment International, 31, 1167–1181.

    Article  Google Scholar 

  • Dossett, S. R., & Bowersox, V. C. (1999). NADP Manual 1999-01—National trends network site operation manual. Champaign: National Atmospheric Deposition Program at the Illinois State Water Survey.

    Google Scholar 

  • Fenn, M. E., Haeuber, R., Tonnessen, G. S., Baron, J. S., Grossman-Clarke, S., Hope, D., et al. (2003). Nitrogen emissions, deposition, and monitoring in the Western United States. BioScience, 53(4), 391–403.

    Article  Google Scholar 

  • Ingersoll, G. P., Turk, J. T., Mast, M. A., Clow, D. W., Campbell, D. H., & Bailey, Z. C. (2001). Rocky Mountain snowpack chemistry network—History, methods, and the importance of monitoring mountain ecosystems. U.S. Geological Survey Open-File Report 01-466.

  • Kanji, H. K. (1993). 100 statistical tests. Newbury Park: Sage.

    Google Scholar 

  • Marks, D., McGurk, B., & Berg, N. (1988). Snow volume comparisons for atmospheric deposition monitoring. In Western snow conference, 56th annual meeting. Kalispell, Mont., April 19–21, 1988, Proceedings. Fort Collins, Colo., Colorado State University.

  • Munger, J. W., & Eisenreich, S. J. (1983). Continental-scale variations in precipitation chemistry. Environmental Science and Technology, 17, 32–42.

    Article  Google Scholar 

  • Nanus, L., Campbell, D. H., Ingersoll, G. P., Clow, D. W., & Mast, M. A. (2003). Atmospheric deposition maps for the Rocky Mountains. Atmospheric Environment, 37, 4881–4892.

    Article  CAS  Google Scholar 

  • National Acid Precipitation Assessment Program (NAPAP) (2005). National acid precipitation assessment program report to congress—An integrated assessment. National Oceanic and Atmospheric Administration. http://ny.cf.er.usgs.gov/napap/Information/NAPAP%20Report%208-22-05.pdf. Accessed 01 February 2011.

  • National Atmospheric Deposition Program (NADP). (2008). Completeness criteria. National Atmospheric Deposition Program. http://nadp.sws.uiuc.edu/documentation/completeness.asp. Accessed 10 June 2008.

  • National Atmospheric Deposition Program (NADP) (2009). National atmospheric deposition program 2008 annual summary—Illinois state water survey miscellaneous publication 189/NADP data report 2009-01. http://nadp.sws.uiuc.edu/lib/data/2008as.pdf. Accessed 01 February 2011.

  • Perry, M., & Hollis, D (2006). The generation of monthly gridded datasets for a range of climatic variables over the United Kingdom. Met Office, Exeter, Devon, UK. http://www.metoffice.gov.uk/climate/uk/about/Monthly_gridded_datasets_UK.pdf. Accessed 01 February 2011.

  • Rife, D. L. (1996). The effects of mountains and complex terrain on airflow and development of clouds and precipitation. Western Region Technical Attachment, no. 96-16. http://www.wrh.noaa.gov/wrh/96TAs/TA9616/ta96-16.html. Accessed 01 February 2011.

  • Ritter, M. E. (2006). The physical environment—An introduction to physical geography. University of Wisconsin-Stevens Point. http://www.uwsp.edu/geo/faculty/ritter/geog101/textbook/title_page.html. Accessed 01 February 2011.

  • Stohlgren, T. J., Melack, J. M., Esperanza, A. M., & Parsons, D. J. (1991). Atmospheric deposition and solute export in giant sequoia—Mixed conifer watersheds in the Sierra Nevada, California. Biogeochemistry, 12, 207–230.

    Article  CAS  Google Scholar 

  • Warren, W. G., Bohm, M., & Link, D. (1992). A statistical methodology for exploring elevational differences in precipitation chemistry. Atmospheric Environment, l.c.(26A)(1), 159–169.

    Google Scholar 

  • Wetherbee, G. A., Latysh, N. E., & Burke, K. P. (2005a). External quality-assurance results for the National Atmospheric Deposition Program/National Trends Network, 2002-2003. U.S. Geological Survey Scientific Investigations Report 2005–5061.

  • Wetherbee, G. A., Latysh, N. E., & Gordon, J. D. (2005b). Spatial and temporal variability of the overall error of national atmospheric deposition program measurements determined by the USGS collocated-sampler program, water years 1989–2001. Environmental Pollution, 135(2005), 407–418.

    Article  CAS  Google Scholar 

  • Wetherbee, G. A., Latysh, N. E., & Greene, S. M. (2006). External quality-assurance results for the National Atmospheric Deposition Program/National Trends Network and Mercury Deposition Network, 2004. U.S. Geological Survey Scientific Investigations Report 2006-5067.

  • Williams, M. W., & Tonnessen, K. A. (2000). Critical loads for inorganic nitrogen deposition in the Colorado Front Range, USA. Ecological Applications, 10(6), 1648–1665.

    Article  Google Scholar 

  • Williams, M. W., Bardsley, T., & Rikkers, M. (1998). Overestimation of snow depth and inorganic nitrogen wetfall using NADP data, Niwot Ridge, Colorado. Atmospheric Environment, 32, 3827–3833.

    Article  CAS  Google Scholar 

  • Zerger, A. (2004). GridSampler. CSIRO Sustainable Ecosystems, Canberra, ACT, 2602, Australia. Available at: http://arcscripts.esri.com/details.asp?dbid=13712. Accessed 01 February 2011.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalie E. Latysh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Latysh, N.E., Wetherbee, G.A. Improved mapping of National Atmospheric Deposition Program wet-deposition in complex terrain using PRISM-gridded data sets. Environ Monit Assess 184, 913–928 (2012). https://doi.org/10.1007/s10661-011-2009-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-2009-7

Keywords

Navigation