Skip to main content

Impact of land-cover change in the Southern Amazonia climate: a case study for the region of Alta Floresta, Mato Grosso, Brazil

Abstract

The transformation of forest into pastures in the Brazilian Amazon leads to significant consequences to climate at local scale. In the region of Alta Floresta (Mato Grosso, Brazil), deforestation has been intense with over half the forests being cut since 1970. This article first examines the evolution of precipitation observed in this region and shows a significant trend in the decrease in total precipitation especially at the end of the dry season and at the beginning of the rainy season. The study then compares the temperatures measured in cleared and forested sectors within a reserve in the area of Alta Floresta (Mato Grosso, Brazil) between 2006 and 2007. The cleared sector was always hotter and drier (from 5% to 10%) than the forested area. This difference was not only especially marked during the day when it reached on average 2°C but also seemed to increase during the night with the onset of the dry season (+0.5°C). The Urban Heat Island effect is also evident especially during the night and in the dry season.

This is a preview of subscription content, access via your institution.

References

  • Aceituno, P. (1998). On the functioning of the Southern Oscillation in the South American sector. Part I: Surface climate. Monthly Weather Review, 116, 505–524.

    Article  Google Scholar 

  • Artaxo, P., & Dias, M. A. (2003). O Mecanismo da floresta para Fazer Chover. Scientific American, 11, 38–45.

    Google Scholar 

  • Arvor, D., Dubreuil, V., Ronchail, J., & Meirelles, M. (2008). Apport des données TRMM 3B42 à l’étude des précipitations au Mato Grosso. Climatologie, 5, 49–70.

    Google Scholar 

  • Betts, R. A., Cox, P. M., Collins, M., Harris, P. P., Huntingford, C., & Jones, C. D. (2004). The role of ecosystem–atmosphere interactions in simulated Amazonian precipitation decrease and forest dieback under global climate warming. Theoretical and Applied Climatology, 78(1-3), 157–175.

    Article  Google Scholar 

  • Burn, D. H., & Hag Elnur, M. A. (2002). Detection of hydrologic trends and variability. Journal of Hydrology, 255(1–4), 107–122.

    Article  Google Scholar 

  • Calvet, J. C., Santos-Alvala, R., Jaubert, G., Delire, C., Nobre, C., Wright, I., et al. (1997). Mapping surface parameters for mesoscale modeling in forested and deforested Southwestern Amazonia. Bulletin of the American Meteorological Society, 78(3), 413–423.

    Article  Google Scholar 

  • Cardille, J. A., & Foley J. A. (2003). Agricultural land-use change in Brazilian Amazonia between 1980 and 1995: evidence from integrated satellite and census data. Remote Sensing of Environment, 87, 551–562.

    Article  Google Scholar 

  • Cauduro Dias de Paiva, E. M., & Clarke, R. T. (1995). Time trends in rainfall records in Amazonia. Bulletin of the American Meteorological Society, 76(11), 2203–2209.

    Article  Google Scholar 

  • Chen, Z., & Grasby, S. E. (2009). Impact of decadal and century-scale oscillations on hydroclimate trend analyses. Journal of Hydrology, 365(1–2), 122–133.

    Article  Google Scholar 

  • Chu, P. S., Yu, Z. P., & Hastenrath, S. (1994) Detecting climate change concurrent with deforestation in the Amazon Basin: which way has it gone? Bulletin of the American Meteorological Society, 75(4), 579–583.

    Article  Google Scholar 

  • Correia, F. W. S., Alvalá, R. C. S., Manzi, A. O. (2008) Modeling the impacts of land cover change in Amazonia: A regional climate model (RCM) simulation study. Theoretical and Applied Climatology, 93(3), 225–244. doi:10.1007/s00704-007-0335-z.

    Article  Google Scholar 

  • Cutrim, E., Martin, D. W., & Rabin, R. (1995). Enhancement of cumulus clouds over deforested lands i Amazonia. Bulletin of the American Meteorological Society, 76(10), 1801–1805.

    Article  Google Scholar 

  • Dubreuil, V. (2002). Environnement et télédétection au Brésil (p. 200). Presses Universitaires de Rennes.

  • Dubreuil, V., Planchon, O., & Cautenet, G. (2001). Déforestation et climat au Mato-Grosso: premiers résultats de modélisation climatique à méso-échelle dans la région d’Alta Floresta (MT-Brésil). Publications de l’Association Internationale de Climatologie, 13, 304–310.

    Google Scholar 

  • Dubreuil, V., Quenol, H., Nédélec, V., Mallet, J. F. , Durieux, L., & Maitelli, G. T. (2008). Etude de l’impact du changement de l’occupation du sol sur les températures dans la région d’Alta Floresta, Brésil. Bulletin de la Société Géographique de Liège, 51, 79–90.

    Google Scholar 

  • Durieux, L. (2002). Etude des relations entre les caractéristiques géographiques de la surface et les nuages convectifs dans la région de l’arc de déforestation en Amazonie (p. 279). PhD Thesis, Université d’Aix-Marseille I.

  • Durieux, L., Machado, L. A. T. , & Laurent, H. (2003). The impact of deforestation on cloud cover over the Amazon arc of deforestation. Remote Sensing of Environment, 86(1), 132–140.

    Article  Google Scholar 

  • Fisch, G., Tota, J., & Machado, L. A. T. (2004). The convective boundary layer over pasture and forest in Amazonia. Theoretical and Applied Climatology, 78(1–3), 47–59.

    Google Scholar 

  • Fu, R., & Li, W. (2004). The influence of the land surface on the transition from dry to wet season in Amazonia. Theoretical and Applied Climatology, 78(1–3), 97–110.

    Google Scholar 

  • Gandu, A. W., Cohen, J. C. P., de Souza, J. R. S. (2004). Simulation of deforestation in eastern Amazonia using a high-resolution model. Theoretical and Applied Climatology, 78(1–3), 123–135.

    Google Scholar 

  • Gash, J. H. C., Nobre, C. A., Roberts, J. M., & Victoria R. L. (1996). Amazonian deforestation and climate (p 611). Chichester: Wiley.

    Google Scholar 

  • Hamed, K. H., & Rao, R. A. (1998). A modified Mann-Kendall trend test for autocorrelated data. Journal of Hydrology, 204(1–4), 182–196.

    Article  Google Scholar 

  • Hasler, N., & Avissar, R. (2006). What controls evapotranspiration in the Amazon Basin? Journal of Hydrometeorology, 8, 380–395.

    Article  Google Scholar 

  • Huntingford, C., Harris, P. P., Gedney, N., Cox, P. M., Betts, R. A., Marengo, J. A., et al. (2004). Using a GCM analogue model to investigate the potential for Amazonian forest dieback. Theoretical and Applied Climatology, 78(1–3), 177–185.

    Google Scholar 

  • Ichii, K., Maruyama, M., & Yamaguchi, Y. (2003). Multi-temporal analysis of deforestation in Rondônia state in Brazil using Landsat MSS, TM, ETM+ and NOAA-AVHRR imagery and its relationship to changes in the hydrological environment. International Journal of Remote Sensing, 24(22), 4467–4479.

    Article  Google Scholar 

  • Kousky, V. E., & Kayano, M. T. (1994). Principal modes of outgoing longwave radiation and 250 mb circulation for the South-American sector. Journal of Climate, 7, 1131–1143.

    Article  Google Scholar 

  • Lambin, E. F., Geist, H. J., & Lepers, E. (2003). Dynamics of Land-use and Land-cover change in tropical regions. Annual Review of Environment and Resources, 28, 205–241.

    Article  Google Scholar 

  • Lean, J., & Warrilow, D. A. (1989). Simulation of the regional climatic impact of Amazon deforestation. Nature, 342, 411–413.

    Article  Google Scholar 

  • Li, W., Fu, R., Negron-Juarez, R. I., & Fernandes, K. (2008). Observed change of the standardized precipitation index, its potential cause and implications to future climate change in the Amazon region. Philosophical Transactions of the Royal Society, 363, 1767–1772.

    Article  Google Scholar 

  • Makarieva, A. M., & Gorshkov, V. G. (2007). Biotic pump of atmospheric moisture as driver of the hydrological cycle on land. Hydrology and Earth System Sciences, 11, 1013–1033.

    Article  Google Scholar 

  • Marengo, J. A. (2004). Interdecadal variability and trends of rainfall across the Amazon basin. Theoretical and Applied Climatology, 78(1–3), 79–86.

    Google Scholar 

  • Marengo, J. A. (2006). On the hydrological cycle of the Amazon basin: a historical review and current state-of-the-art. Revista brasileira de meterologia, 21(3), 1–19.

    Google Scholar 

  • Marengo, J. A., Nobre, C. A., Tomasella, J., Oyama, M. D., de Oliveira, G. S., de Oliveira, R., et al. (2008). The drought of Amazonia in 2005. Journal of Climate, 21, 495–516.

    Article  Google Scholar 

  • Mendonça, F., & Dubreuil, V. (2002). L’étude du climat urbain au Brésil: Etat actuel et contribution de la télédétection. In V. Dubreuil (Ed.), Environnement et télédétection au Brésil, (pp. 135–146). Presses Universitaires de Rennes.

  • Nédélec, V. (2005). Modélisation de la colonisation agricole et de la déforestation dans le nord du Mato Grosso: approche multiscalaire par télédétection (p. 294). PhD thesis, Université Rennes 2.

  • Negri, A. J, Anagnostou, E. N., & Adler, R. F. (2000). A 10-yr climatology of Amazonian rainfall derived from passive microwave satellite observations. Journal of Applied Meteorology, 39(1), 42–56.

    Article  Google Scholar 

  • Nimer, E. (1989). Climatologia do Brasil (p. 421). Rio de Janeiro: IBGE.

    Google Scholar 

  • Nobre, C. A., Sellers, P. J., & Shukla, J. (1991). Amazonian deforestation and regional climate change. Journal of Climate, 4, 957–988.

    Article  Google Scholar 

  • Pielke, R. A. (2001). Influence of the spatial distribution of vegetations and soils on the prediction of cumulus convective rainfall. Reviews of Geophysics, 39(2), 151–177.

    Article  Google Scholar 

  • Polcher, J., & Laval, K. (1994). The impact of African and Amazonian deforestation on tropical climate. Journal of Hydrology, 155, 389–405.

    Article  Google Scholar 

  • Salati, E., Marques, J., & Molion, C. (1978). Origem e Distribuição das chuvas na Amazônia. Interciência, 3(4), 200–206.

    Google Scholar 

  • Silva Dias, M. A. F., et al. (2002). Cloud and drain processes in a biosphere-atmosphere interaction context in the Amazon Region. Journal of Geophysical Research, 107(D20), 8072.

    Article  Google Scholar 

  • Sheil, D., & Murdiyarso, D. (2009). How forests attract rain: an examination of a new hypothesis. BioScience, 59(4), 341–347.

    Article  Google Scholar 

  • Valeriano, D. M., Shimabukuro, Y. E., & Duarte, V. (2005). Detecção do desflorestamento da Amazônia Legal em tempo real – Projeto DETER. Anais do XII SBSR, Goiania, Brazil, pp. 3403–3409.

  • Von Randow, C., Manzi, A. O., Kruijt, B., de Oliveira, P. J., Zanchi, F. B. , Silva, R. L. , et al. (2004). Comparative measurements and seasonal variations in energy and carbon exchange over forest and pasture in South West Amazonia. Theoretical and Applied Climatology, 78(1–3), 5–26.

    Google Scholar 

  • Vourlitis, G. L., Priante-Filho, N., Hayashi, M. M. S., Nogueira, J. S., Caseiro, F. T., & Campelo Junior, J. H. (2002). Seasonal variations in the evapotranspiration of a transitional tropical forest of Mato Grosso, Brazil. Water resources research, 38, 1–11.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Dubreuil.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dubreuil, V., Debortoli, N., Funatsu, B. et al. Impact of land-cover change in the Southern Amazonia climate: a case study for the region of Alta Floresta, Mato Grosso, Brazil. Environ Monit Assess 184, 877–891 (2012). https://doi.org/10.1007/s10661-011-2006-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-2006-x

Keywords

  • Deforestation
  • Rainfall
  • Temperatures
  • Amazonia