Advertisement

Environmental Monitoring and Assessment

, Volume 184, Issue 2, pp 877–891 | Cite as

Impact of land-cover change in the Southern Amazonia climate: a case study for the region of Alta Floresta, Mato Grosso, Brazil

  • Vincent DubreuilEmail author
  • Nathan Debortoli
  • Beatriz Funatsu
  • Vincent Nédélec
  • Laurent Durieux
Article

Abstract

The transformation of forest into pastures in the Brazilian Amazon leads to significant consequences to climate at local scale. In the region of Alta Floresta (Mato Grosso, Brazil), deforestation has been intense with over half the forests being cut since 1970. This article first examines the evolution of precipitation observed in this region and shows a significant trend in the decrease in total precipitation especially at the end of the dry season and at the beginning of the rainy season. The study then compares the temperatures measured in cleared and forested sectors within a reserve in the area of Alta Floresta (Mato Grosso, Brazil) between 2006 and 2007. The cleared sector was always hotter and drier (from 5% to 10%) than the forested area. This difference was not only especially marked during the day when it reached on average 2°C but also seemed to increase during the night with the onset of the dry season (+0.5°C). The Urban Heat Island effect is also evident especially during the night and in the dry season.

Keywords

Deforestation Rainfall Temperatures Amazonia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aceituno, P. (1998). On the functioning of the Southern Oscillation in the South American sector. Part I: Surface climate. Monthly Weather Review, 116, 505–524.CrossRefGoogle Scholar
  2. Artaxo, P., & Dias, M. A. (2003). O Mecanismo da floresta para Fazer Chover. Scientific American, 11, 38–45.Google Scholar
  3. Arvor, D., Dubreuil, V., Ronchail, J., & Meirelles, M. (2008). Apport des données TRMM 3B42 à l’étude des précipitations au Mato Grosso. Climatologie, 5, 49–70.Google Scholar
  4. Betts, R. A., Cox, P. M., Collins, M., Harris, P. P., Huntingford, C., & Jones, C. D. (2004). The role of ecosystem–atmosphere interactions in simulated Amazonian precipitation decrease and forest dieback under global climate warming. Theoretical and Applied Climatology, 78(1-3), 157–175.CrossRefGoogle Scholar
  5. Burn, D. H., & Hag Elnur, M. A. (2002). Detection of hydrologic trends and variability. Journal of Hydrology, 255(1–4), 107–122.CrossRefGoogle Scholar
  6. Calvet, J. C., Santos-Alvala, R., Jaubert, G., Delire, C., Nobre, C., Wright, I., et al. (1997). Mapping surface parameters for mesoscale modeling in forested and deforested Southwestern Amazonia. Bulletin of the American Meteorological Society, 78(3), 413–423.CrossRefGoogle Scholar
  7. Cardille, J. A., & Foley J. A. (2003). Agricultural land-use change in Brazilian Amazonia between 1980 and 1995: evidence from integrated satellite and census data. Remote Sensing of Environment, 87, 551–562.CrossRefGoogle Scholar
  8. Cauduro Dias de Paiva, E. M., & Clarke, R. T. (1995). Time trends in rainfall records in Amazonia. Bulletin of the American Meteorological Society, 76(11), 2203–2209.CrossRefGoogle Scholar
  9. Chen, Z., & Grasby, S. E. (2009). Impact of decadal and century-scale oscillations on hydroclimate trend analyses. Journal of Hydrology, 365(1–2), 122–133.CrossRefGoogle Scholar
  10. Chu, P. S., Yu, Z. P., & Hastenrath, S. (1994) Detecting climate change concurrent with deforestation in the Amazon Basin: which way has it gone? Bulletin of the American Meteorological Society, 75(4), 579–583.CrossRefGoogle Scholar
  11. Correia, F. W. S., Alvalá, R. C. S., Manzi, A. O. (2008) Modeling the impacts of land cover change in Amazonia: A regional climate model (RCM) simulation study. Theoretical and Applied Climatology, 93(3), 225–244. doi: 10.1007/s00704-007-0335-z.CrossRefGoogle Scholar
  12. Cutrim, E., Martin, D. W., & Rabin, R. (1995). Enhancement of cumulus clouds over deforested lands i Amazonia. Bulletin of the American Meteorological Society, 76(10), 1801–1805.CrossRefGoogle Scholar
  13. Dubreuil, V. (2002). Environnement et télédétection au Brésil (p. 200). Presses Universitaires de Rennes.Google Scholar
  14. Dubreuil, V., Planchon, O., & Cautenet, G. (2001). Déforestation et climat au Mato-Grosso: premiers résultats de modélisation climatique à méso-échelle dans la région d’Alta Floresta (MT-Brésil). Publications de l’Association Internationale de Climatologie, 13, 304–310.Google Scholar
  15. Dubreuil, V., Quenol, H., Nédélec, V., Mallet, J. F. , Durieux, L., & Maitelli, G. T. (2008). Etude de l’impact du changement de l’occupation du sol sur les températures dans la région d’Alta Floresta, Brésil. Bulletin de la Société Géographique de Liège, 51, 79–90.Google Scholar
  16. Durieux, L. (2002). Etude des relations entre les caractéristiques géographiques de la surface et les nuages convectifs dans la région de l’arc de déforestation en Amazonie (p. 279). PhD Thesis, Université d’Aix-Marseille I.Google Scholar
  17. Durieux, L., Machado, L. A. T. , & Laurent, H. (2003). The impact of deforestation on cloud cover over the Amazon arc of deforestation. Remote Sensing of Environment, 86(1), 132–140.CrossRefGoogle Scholar
  18. Fisch, G., Tota, J., & Machado, L. A. T. (2004). The convective boundary layer over pasture and forest in Amazonia. Theoretical and Applied Climatology, 78(1–3), 47–59.Google Scholar
  19. Fu, R., & Li, W. (2004). The influence of the land surface on the transition from dry to wet season in Amazonia. Theoretical and Applied Climatology, 78(1–3), 97–110.Google Scholar
  20. Gandu, A. W., Cohen, J. C. P., de Souza, J. R. S. (2004). Simulation of deforestation in eastern Amazonia using a high-resolution model. Theoretical and Applied Climatology, 78(1–3), 123–135.Google Scholar
  21. Gash, J. H. C., Nobre, C. A., Roberts, J. M., & Victoria R. L. (1996). Amazonian deforestation and climate (p 611). Chichester: Wiley.Google Scholar
  22. Hamed, K. H., & Rao, R. A. (1998). A modified Mann-Kendall trend test for autocorrelated data. Journal of Hydrology, 204(1–4), 182–196.CrossRefGoogle Scholar
  23. Hasler, N., & Avissar, R. (2006). What controls evapotranspiration in the Amazon Basin? Journal of Hydrometeorology, 8, 380–395.CrossRefGoogle Scholar
  24. Huntingford, C., Harris, P. P., Gedney, N., Cox, P. M., Betts, R. A., Marengo, J. A., et al. (2004). Using a GCM analogue model to investigate the potential for Amazonian forest dieback. Theoretical and Applied Climatology, 78(1–3), 177–185.Google Scholar
  25. Ichii, K., Maruyama, M., & Yamaguchi, Y. (2003). Multi-temporal analysis of deforestation in Rondônia state in Brazil using Landsat MSS, TM, ETM+ and NOAA-AVHRR imagery and its relationship to changes in the hydrological environment. International Journal of Remote Sensing, 24(22), 4467–4479.CrossRefGoogle Scholar
  26. Kousky, V. E., & Kayano, M. T. (1994). Principal modes of outgoing longwave radiation and 250 mb circulation for the South-American sector. Journal of Climate, 7, 1131–1143.CrossRefGoogle Scholar
  27. Lambin, E. F., Geist, H. J., & Lepers, E. (2003). Dynamics of Land-use and Land-cover change in tropical regions. Annual Review of Environment and Resources, 28, 205–241.CrossRefGoogle Scholar
  28. Lean, J., & Warrilow, D. A. (1989). Simulation of the regional climatic impact of Amazon deforestation. Nature, 342, 411–413.CrossRefGoogle Scholar
  29. Li, W., Fu, R., Negron-Juarez, R. I., & Fernandes, K. (2008). Observed change of the standardized precipitation index, its potential cause and implications to future climate change in the Amazon region. Philosophical Transactions of the Royal Society, 363, 1767–1772.CrossRefGoogle Scholar
  30. Makarieva, A. M., & Gorshkov, V. G. (2007). Biotic pump of atmospheric moisture as driver of the hydrological cycle on land. Hydrology and Earth System Sciences, 11, 1013–1033.CrossRefGoogle Scholar
  31. Marengo, J. A. (2004). Interdecadal variability and trends of rainfall across the Amazon basin. Theoretical and Applied Climatology, 78(1–3), 79–86.Google Scholar
  32. Marengo, J. A. (2006). On the hydrological cycle of the Amazon basin: a historical review and current state-of-the-art. Revista brasileira de meterologia, 21(3), 1–19.Google Scholar
  33. Marengo, J. A., Nobre, C. A., Tomasella, J., Oyama, M. D., de Oliveira, G. S., de Oliveira, R., et al. (2008). The drought of Amazonia in 2005. Journal of Climate, 21, 495–516.CrossRefGoogle Scholar
  34. Mendonça, F., & Dubreuil, V. (2002). L’étude du climat urbain au Brésil: Etat actuel et contribution de la télédétection. In V. Dubreuil (Ed.), Environnement et télédétection au Brésil, (pp. 135–146). Presses Universitaires de Rennes.Google Scholar
  35. Nédélec, V. (2005). Modélisation de la colonisation agricole et de la déforestation dans le nord du Mato Grosso: approche multiscalaire par télédétection (p. 294). PhD thesis, Université Rennes 2.Google Scholar
  36. Negri, A. J, Anagnostou, E. N., & Adler, R. F. (2000). A 10-yr climatology of Amazonian rainfall derived from passive microwave satellite observations. Journal of Applied Meteorology, 39(1), 42–56.CrossRefGoogle Scholar
  37. Nimer, E. (1989). Climatologia do Brasil (p. 421). Rio de Janeiro: IBGE.Google Scholar
  38. Nobre, C. A., Sellers, P. J., & Shukla, J. (1991). Amazonian deforestation and regional climate change. Journal of Climate, 4, 957–988.CrossRefGoogle Scholar
  39. Pielke, R. A. (2001). Influence of the spatial distribution of vegetations and soils on the prediction of cumulus convective rainfall. Reviews of Geophysics, 39(2), 151–177.CrossRefGoogle Scholar
  40. Polcher, J., & Laval, K. (1994). The impact of African and Amazonian deforestation on tropical climate. Journal of Hydrology, 155, 389–405.CrossRefGoogle Scholar
  41. Salati, E., Marques, J., & Molion, C. (1978). Origem e Distribuição das chuvas na Amazônia. Interciência, 3(4), 200–206.Google Scholar
  42. Silva Dias, M. A. F., et al. (2002). Cloud and drain processes in a biosphere-atmosphere interaction context in the Amazon Region. Journal of Geophysical Research, 107(D20), 8072.CrossRefGoogle Scholar
  43. Sheil, D., & Murdiyarso, D. (2009). How forests attract rain: an examination of a new hypothesis. BioScience, 59(4), 341–347.CrossRefGoogle Scholar
  44. Valeriano, D. M., Shimabukuro, Y. E., & Duarte, V. (2005). Detecção do desflorestamento da Amazônia Legal em tempo real – Projeto DETER. Anais do XII SBSR, Goiania, Brazil, pp. 3403–3409.Google Scholar
  45. Von Randow, C., Manzi, A. O., Kruijt, B., de Oliveira, P. J., Zanchi, F. B. , Silva, R. L. , et al. (2004). Comparative measurements and seasonal variations in energy and carbon exchange over forest and pasture in South West Amazonia. Theoretical and Applied Climatology, 78(1–3), 5–26.Google Scholar
  46. Vourlitis, G. L., Priante-Filho, N., Hayashi, M. M. S., Nogueira, J. S., Caseiro, F. T., & Campelo Junior, J. H. (2002). Seasonal variations in the evapotranspiration of a transitional tropical forest of Mato Grosso, Brazil. Water resources research, 38, 1–11.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Vincent Dubreuil
    • 1
    Email author
  • Nathan Debortoli
    • 2
  • Beatriz Funatsu
    • 1
  • Vincent Nédélec
    • 1
  • Laurent Durieux
    • 3
  1. 1.Laboratoire COSTELUMR6554 LETG du CNRSRennes CedexFrance
  2. 2.Center for Sustainable DevelopmentUniversidade de BrasiliaAsa Norte - Brasília-DFBrazil
  3. 3.Unité Espace S140Institut de Recherche pour le DéveloppementBRASILIA (DF)Brazil

Personalised recommendations