Skip to main content
Log in

Atmospheric arsenic (As) study at five characteristic sampling sites in Taiwan

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The main purpose for this study is to observe the seasonal and monthly variations for arsenic (As) in total suspended particulates (TSP) concentration and dry deposition at five characteristic sampling sites during the years 2009 and 2010 in central Taiwan. The results show that the highest and lowest monthly average As concentrations in TSP occurred in January and May at Bei-shi (suburban/coastal) and Quan-xing (industrial) sampling sites. In addition, the results show that the highest and lowest monthly average As dry deposition occurred in October and May at Chang-hua (downtown) and Gao-mei (wetland) sampling sites. This study reflected that the mean highest As concentrations in TSP and mean highest As dry deposition occurred at Quan-xing (industrial). However, the mean lowest As concentrations in TSP and mean lowest As dry deposition also occurred at Gao-mei (wetland). Regarding seasonal variation, the results show that the As average seasonal concentration order in TSP was winter > spring > fall > summer, respectively, at Chang-hua (downtown) and He-mei (residential) sampling sites. Finally, the order of As average seasonal dry deposition was fall > winter > spring > summer, respectively, at Chang-hua (downtown), He-mei (residential), and Gao-mei (wetland) sampling sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chu, C. C., Fang, G. C., Chen, J. C., & Lin, I. C. (2008). Ambient air dry deposition and ionic species analysis by using various deposition collectors in Shalu, central Taiwan. Atmospheric Research, 88, 212–223.

    Article  CAS  Google Scholar 

  • Duker, A. A., Carranza, E. J. M., & Hale, M. (2005). Arsenic geochemistry and health. Environment International, 31, 631–641.

    Article  CAS  Google Scholar 

  • Fang, G. C., Basu, N., Nam, D. H., & Yang, I. L. (2009). Characterization of ambient air particulates and particulate mercury at Sha-Lu, central Taiwan. Environmental Forensics, 10, 277–285.

    Article  CAS  Google Scholar 

  • Farinha, M. M., Slejkovec, Z., Vanelteren, J. T., Wolterbeek, H. Th., & Freitas, M. C. (2004). Arsenic speciation in lichens and in coarse and fine airborne particulate matter by HPLC–UV–HG–AFS. Journal of Atmospheric Chemistry, 49, 343–353.

    Article  CAS  Google Scholar 

  • Harrison, R. M., Smith, D. J. T., Pio, C. A., & Castro, L. M. (1997). Comparative receptor modeling study of airborne particulate pollutants in Birmingham (United Kingdom), Coimbra (Portugal) and Lahore (Pakistan). Atmospheric Environment, 31, 3309–3321.

    Article  CAS  Google Scholar 

  • Hayes, R. B. (1997). The carcinogenicity of metals in humans. Cancer Causes and Control, 8, 371–385.

    Article  CAS  Google Scholar 

  • Holsen, T. M., Noll, K. E., Fang, G. C., Lee, W. J., & Lin, J. M. (1993). Dry deposition and particle size distributions measured during the Lake Michigan urban air toxics study. Environmental Science & Technology, 7, 1327–1333.

    Article  Google Scholar 

  • Huang, X., Olmez, I., Aras, N. K., & Gordon, G. E. (1994). Emissions of trace elements from motor vehicles: Potential marker elements and source composition profile. Atmospheric Environment, 28, 1385–1391.

    Article  Google Scholar 

  • Künzli, N., Mudway, I. S., Götschi, T., Shi, T., Kelly, F. J., Cook, S., et al. (2006). Comparison of oxidative properties, light absorbance, and total and elemental mass concentration of ambient PM2.5 collected at 20 European sites. Environmental Health Perspectives, 5, 114.

    Google Scholar 

  • Lin, J. M., Fang, G. C., Holsen, T. M., & Noll, K. E. (1993). Dry deposition of atmospheric particles. Atmospheric Environment, 27, 1131–1138.

    Article  Google Scholar 

  • Milford, J. B., & Davidson, C. I. (1985). The size of particulate trace elements in the atmosphere: A review. Journal of the Air Pollution Control Association, 35, 1249–1260.

    CAS  Google Scholar 

  • Oliveira, V., Gomez-Ariza J. L., & Sanchez-Rodas, D. (2005). Extraction procedures for chemical speciation of arsenic in atmospheric total suspended particles. Analytical and Bioanalytical Chemistry, 382, 335–340.

    Article  CAS  Google Scholar 

  • Roy, P., & Saha, A. (2002). Metabolism and toxicity of arsenic: A human carcinogen. Current Science, 82, 38–45.

    CAS  Google Scholar 

  • Sanchez dela Campa, A. M., de la Rosa, J. D., Sanchez-Rodas, D., Oliveira, V., Alastuey, A., Querol, X., et al. (2008). Arsenic speciation study of PM2.5 in an urban area near a copper smelter. Atmospheric Environment, 42, 6487–6495.

    Article  Google Scholar 

  • Sanchez-Rodas, D., Sanchez dela Campa, A. M., de la Rosa, J. D., Oliveira, V., Gomez Ariza, J. L., Querol, X., et al. (2007). Arsenic speciation of atmospheric particulate matter (PM10) in an industrialized urban site in southwestern Spain. Chemosphere, 66, 1485–1493.

    Article  CAS  Google Scholar 

  • Serbula, S. M., Antonijevic, M. M., Milosevic, N. M., Milic, S. M., & Ilic, A. A. (2010). Concentrations of particulate matter and arsenic in Bor (Serbia). Journal of Hazardous Materials, 181, 23–51.

    Article  Google Scholar 

  • Thomaidis, N. S., Bakeas, E. B., & Siskos, P. A. (2003). Characterization of lead, cadmium, arsenic and nickel in PM2.5 particles in the Athens atmosphere, Greece. Chemosphere, 52, 959–966.

    CAS  Google Scholar 

  • Tsai, Y. I., Kuo, S. C., & Lin, Y. H. (2003). Temporal characteristics of inhalable mercury and arsenic aerosols in the urban atmosphere in southern Taiwan. Atmospheric Environment, 37, 3401–3411.

    Article  CAS  Google Scholar 

  • Vassilakos, Ch., Veros, D., Michopoulos, J., Maggos, T., & O’Connor, C. M. (2007). Estimation of selected heavy metals and arsenic in PM10 aerosols in the ambient air of the Greater Athens Area, Greece. Journal of Hazardous Materials, 140, 389–398.

    Article  CAS  Google Scholar 

  • WHO (World Health Organization) (2000). Air quality guidelines for Europe (2nd ed.). Copenhagen: WHO Regional Publications, Regional Office for Europe.

    Google Scholar 

  • Wu, Y., Hao, J. M., Fu, L. X., Hu, J. N., Wang, Z. S., & Tang, U. W. (2003). Chemical characteristics of airborne particulate matter near major roads and at background locations in Macao, China. Science of the Total Environment, 317, 159–172.

    Article  CAS  Google Scholar 

  • Xie, R., Seip, H. M., Wibetoe, G., Nori, S., & McLeod, C. W. (2006). Heavy coal combustion as the dominant source of particulate pollution in Taiyuan, China, corroborated by high concentrations of arsenic and selenium in PM10. Science of the Total Environment, 370, 409–415.

    Article  CAS  Google Scholar 

  • Zheng, J., Tan, M. G., Shibata, Y., Tanaka, A., Li, Y., & Zhang, G. L. (2004). Characteristics of lead isotope ratios and elemental concentrations in PM10 fraction of airborne particulate matter in Shanghai after the phase-out of leaded gasoline. Atmospheric Environment, 38, 1191–1200.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guor-Cheng Fang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, GC., Huang, YL. & Huang, JH. Atmospheric arsenic (As) study at five characteristic sampling sites in Taiwan. Environ Monit Assess 184, 729–740 (2012). https://doi.org/10.1007/s10661-011-1997-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-1997-7

Keywords

Navigation