Skip to main content
Log in

Slurry wall containment performance: monitoring and modeling of unsaturated and saturated flow

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

A specific 2-year program to monitor and test both the vadose zone and the saturated zone, coupled with a numerical analysis, was performed to evaluate the overall performance of slurry wall systems for containment of contaminated areas. Despite local physical confinement (slurry walls keyed into an average 2-m-thick aquitard), for at least two decades, high concentrations of chlorinated solvents (up to 110 mg l − 1) have been observed in aquifers that supply drinking water close to the city of Milan (Italy). Results of monitoring and in situ tests have been used to perform an unsaturated-saturated numerical model. These results yielded the necessary quantitative information to be used both for the determination of the hydraulic properties of the different media in the area and for the calibration and validation of the numerical model. Backfill material in the shallower part of the investigated aquifer dramatically affects the natural recharge of the encapsulated area. A transient simulation from wet to drought periods highlights a change in the ratio between leakages from lateral barriers that support a specific scenario of water loss through the containment system. The combination of monitoring and modelling allows a reliable estimate of the overall performance of the physical confinement to be made without using any invasive techniques on slurry wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberti, L., Brogioli, G., Formentin, G., Marangoni, T., & Masetti, M. (2007). Experimental studies and numerical modeling of surface water–groundwater interaction in a semi-disconnected system. In XXXV IAH congress, groundwater and ecosystems, Lisbon, Portugal.

  • Anderson, M. P., & Woessner, W. W. (1992). Applied groundwater modeling: Simulation of flow and advective transport. San Diego: Academic.

    Google Scholar 

  • Bayer, P., Finkel, M., & Teutsch, G. (2004). Hydraulic performance of a combination of pump-and-treat and physical barrier systems for contaminant plume management. Ground Water, 42(6), 856–867.

    Article  CAS  Google Scholar 

  • Benson, C. H. (2002). Containment systems: Lessons learned from north american failures. In Environmental geotechnics (4th ICEG), Swets and Zeitlinger, Lisse, 1095–1112.

  • Beretta, G. P., Bianchi, M., & Pellegrini, R. (2003). Linee guida per la verifica ed il collaudo delle barriere impermeabili per la messa in sicurezza di siti contaminati. Technical report, Provincia di Milano, Milan (in Italian).

  • Bolster, D., Barahona-Palomo, M., Dentz, M., Fernàndez Garcia, D., Sanchez-Vila, X., Trinchero, P., et al. (2009). Probabilistic risk assessment applied to contamination scenarios in porous media. Water Resources Research, 45, W06413. doi:10.1029/2008WR007551.

    Article  Google Scholar 

  • Brandelik, A., & Huebner, C. (2003). Moisture monitoring in waste disposal surface barriers. Environmental Monitoring and Assessment, 84, 61–70.

    Article  Google Scholar 

  • Britton, J. P., Filz, G. M., & Herring, W. E. (2004). Measuring the hydraulic conductivity of soil-bentonite backfill. Journal of Geotechnical and Geoenvironmental Engineering (ASCE), 130(12), 1250–1258.

    Article  Google Scholar 

  • Candelaria, L. M., & Matsumoto, M. R. (2000). Effects of NAPL contaminants on the permeability of a soil-bentonite slurry wall material. Transport in Porous Media, 38, 43–56.

    Article  CAS  Google Scholar 

  • Chen, D. W., Moeti, L., Carsel, R. F., & Vona, B. (1999). Assessment and prediction of contaminant transport and migration at a Florida superfund site. Environmental Monitoring and Assessment, 57, 291–299.

    Article  Google Scholar 

  • Choi, H., & Daniel, D. E. (2006). Slug test analysis in vertical cutoff walls. I: Analysis methods. Journal of Geotechnical and Geoenvironmental Engineering (ASCE), 132(4), 429–438.

    Article  Google Scholar 

  • D’Appolonia, D. J. (1980). Soil-bentonite slurry trench cutoffs. Journal of Geotechnical and Geoenvironmental Engineering (ASCE), 106(4), 399–417.

    Google Scholar 

  • de Barros, F. P. J., Rubin, Y., & Maxwell, R. M. (2009). The concept of comparative information yield curves and their application to risk-based site characterization. Water Resources Research, 45, W06401.

    Article  Google Scholar 

  • ENI-AGIP (2002). Geologia degli acquiferi padani della Regione L ombardia. Regione-Lombardia—ENI Divisione AGIP.

  • Evans, J. C. (1993). Vertical cutoff walls. Geotechnical practice for waste disposal (Chapter 17). New York: Chapman & Hall.

    Google Scholar 

  • Filz, G. M., & Mitchell, J. K. (1995). Design, construction, and performance of soil- and cement-based vertical barriers. In R. R. Rumer, & J. K. Mitchell (Eds.), International containment technology conference (p. 63). Baltimore: US DoE, US EPA, and Dupont Company.

    Google Scholar 

  • GEO-SLOPE International Ltd. 2002 (2006). SEEP/W for finite elements seepage analysis version 5 user’s guide, Calgary.

  • Green, R. E., & Corey, J. C. (1971). Calculation of hydraulic conductivity: A further evaluation of some predictive methods1. Soil Science Society of America Journal, 35(5), 3–8.

    Article  Google Scholar 

  • Gupta, S. C., & Larson, W. E. (1979). Estimating soil water retention characteristics from particle size distribution, organic matter percent and bulk density. Water Resources Research, 15, 1633–1635.

    Article  Google Scholar 

  • Hajnal, I., Marton, J., & Regele, Z. (1984). Construction of diaphragm walls. New York: Wiley.

    Google Scholar 

  • Hudak, P. F., & Loaiciga, H. A. (1999). Conjunctive vadose and saturated zone monitoring for subsurface contamination. Environmental Monitoring and Assessment, 59, 15–29.

    Article  CAS  Google Scholar 

  • Inyang, H. (2004). Modeling the long-term performance of waste containment systems. Environmental Science & Technology, 38(17), 328–334.

    Article  Google Scholar 

  • Inyang, H. I., & Tomassoni, G. (1992). Indexing of long-term effectiveness of waste containment systems for a regulatory impact analysis (p. 29). Technical report, a technical guidance document, Office of Solid Waste, US EPA, Washington.

  • Manassero, M. (1994). Hydraulic conductivity assessment of slurry wall using piezocone test. Journal of Geotechnical and Geoenvironmental Engineering (ASCE), 120(10), 1725–1746.

    Google Scholar 

  • Manassero, M., Fratalocchi, E., Pasqualini, E., Spanna, C., & Verga, F. (1995). Containment with vertical cutoff walls. In Y. B. Acar, & D. E. Daniel (Eds.), GeoEnvironment 2000, GSP no. 46 (pp. 1142–1172). New Orleans: ASCE.

    Google Scholar 

  • Nash, K. L. (1974). Diaphragm wall construction techniques. Journal of the Construction Division (ASCE), 100(4), 605–620.

    Google Scholar 

  • Paul, D. B., Davidson, R. R., & Cavalli, N. J. (1992). Slurry walls: Design, construction and quality control. In ASTM STO 1129. Philadephia: American Society for Testing and Material

    Google Scholar 

  • Pedretti, D., Masetti, M., & Francioli, A. (2009). Geostatistical techniques for DNAPL contamination assessment in polluted aquifers. The case of the former Chimica Bianchi facility in the Milan-Rho district. Rendiconti online Soc. Geol. It., 2(1–3).

    Google Scholar 

  • Rolle, E., Beretta, G. P., Majone, M., Pedretti, D., Petrangeli-Papini, M., & Raffaelli, L. (2009). Analisi delle alternative tecnologiche per il contenimento della contaminazione di acque sotterranee. In Seiminario sulla reindustrializzazione di siti inquinati e tecnologie di intervento sulle acque sotterranee sui sedimenti. Rome: Italian Ministry od Economic Development.

    Google Scholar 

  • Ryan, C. R. (1987). Vertical barrier in soil for pollution containment. Geotechnical practice for waste disposal (pp. 182–204). New York: ASCE.

    Google Scholar 

  • Ryan, C. R. (1994). Slurry cutoff walls: Applications in the control of hazardous wastes, hydraulic barriers in soil and rock. In A. I. Johnson, R. K. Frobel, N. J. Cavalli, & C. B. Pettersson (Eds.), STP 874 (pp. 9–23). Denver: ASTM.

    Google Scholar 

  • Ryan, C. R., & Day, S. R. (2003). Soil-bentonite slurry wall specifications. In Pan American conference on soils mechanics & geotechnical engineering. Cambridge: Geo-Institute and MIT.

    Google Scholar 

  • Tartakovsky, D. M., & Winter, C. L. (2008). Uncertain future of hydrogeology. ASCE Journal of Hydrologic Engineering, 13(1), 37–39.

    Article  Google Scholar 

  • United States Environmental Protection Agency (EPA) (1998). Evaluation of subsurface engineered barriers at waste sites. EPA 542-R-98-005, 148 pp.

  • Winter, C. L., & Tartakovsky, D. M. (2008). A reduced complexity model for probabilistic risk assessment of groundwater contamination. Water Resources Research, 44(1), W06501.

    Article  Google Scholar 

  • Xanthakos, P. P. (1994). Slurry walls as structural systems (2nd ed.). New York: McGraw-Hill.

    Google Scholar 

  • Zheng, C., & Bennett, G. D. (1997). Applied contaminant transport modeling (2nd ed.). New York: Wiley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Pedretti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pedretti, D., Masetti, M., Marangoni, T. et al. Slurry wall containment performance: monitoring and modeling of unsaturated and saturated flow. Environ Monit Assess 184, 607–624 (2012). https://doi.org/10.1007/s10661-011-1990-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-1990-1

Keywords

Navigation