Skip to main content
Log in

Detection and object-based classification of offshore oil slicks using ENVISAT-ASAR images

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The aim of this study is to propose and test a multi-level methodology for detection of oil slicks in ENVISAT Advanced Synthetic Aperture Radar (ASAR) imagery, which can be used to support the identification of hydrocarbon seeps. We selected Andrusov Ridge in the Central Black Sea as the test study area where extensive hydrocarbon seepages were known to occur continuously. Hydrocarbon seepage from tectonic or stratigraphic origin at the sea floor causes oily gas plumes to rise up to the sea surface and form thin oil films called oil slicks. Microwave sensors like synthetic aperture radar (SAR) are very suitable for ocean remote sensing as they measure the backscattered radiation from the surface and show the roughness of the terrain. Oil slicks dampen the sea waves creating dark patches in the SAR image. The proposed and applied methodology includes three levels: visual interpretation, image filtering and object-based oil spill detection. Level I, after data preparation with visual interpretation, includes dark spots identification and subsets/scenes creation. After this process, the procedure continues with categorization of subsets/scenes into three cases based on contrast difference of dark spots to the surroundings. In level II, by image and morphological filtering, it includes preparation of subsets/scenes for segmentation. Level III includes segmentation and feature extraction which is followed by object-based classification. The object-based classification is applied with the fuzzy membership functions defined by extracted features of ASAR subsets/scenes, where the parameters of the detection algorithms are tuned specifically for each case group. As a result, oil slicks are discriminated from look-alikes with an overall classification accuracy of 83% for oil slicks and 77% for look-alikes obtained by averaging three different cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allan, T. D. (1983). Satellite microwave remote sensing. Chichester: Horwood, p. 526.

    Google Scholar 

  • Arvelyna, Y., Oshima, M., Kristijuno, A., & Gunawan, I. (2001). Auto segmentation of oil slick in RADARSAT SAR image data around Rupat Island, Malaca Strait. In 22nd Asian conference on remote sensing.

  • Baatz, M., & Schäpe, A. (2000). Multiresolution segmentation—an optimization approach for high quality multiscale image segmentation. In: J. Strobl, et al. (Eds.), Angewandte Geographische Informationsverarbeitung XII (pp. 12–23). Heidelberg: Wichmann.

    Google Scholar 

  • Bertacca, M., Berizzi, F., & Mese, E. D. (2005). A FARIMA-based technique for oil slick and low-wind areas discrimination in sea SAR imagery. IEEE Transactions On Geoscience And Remote Sensing, 43(11), 2484–2493.

    Article  Google Scholar 

  • Brekke, C., & Solberg, A. H. S. (2005). Oil spill detection by satellite remote sensing. Remote Sensing of Environment, 95, 1–13.

    Article  Google Scholar 

  • Clarke, R. H., & Cleverly, R. W. (1991). Petroleum seepage and post-accumulation migration. In: W. A. England, J. A. Fleet (Eds.), Petroleum migration (pp. 265–271). London: Geological Society.

    Google Scholar 

  • Dalling, P. S., & Strøm, T. (1999). Weathering of oils at sea: model/field data comparisons. Spill Science & Technology Bulletin, 5(1), 63–74.

    Article  Google Scholar 

  • eCognition. (2004). User guide. München: Definiens Imaging, p. 486.

  • Ergün, M., Dondurur, D., & Çiftçi, G. (2002). Acoustic evidence for shallow gas accumulations in the sediments of the Eastern Black Sea. Terra Nova, 14(5), 313–320.

    Article  Google Scholar 

  • Espedal, H. A., & Wahl, T. (1999). Satellite SAR oil spill detection using wind history information. International Journal of Remote Sensing, 20(1), 49–65.

    Article  Google Scholar 

  • Fingas, M. F., & Brown, C. E. (1997). Review of oil spill remote sensing. Spill Science &Technology Bulletin, 4(4), 199–208.

    Article  CAS  Google Scholar 

  • Fiscella, B., Giancaspro, A., Nirchio, F., Pavase, P., & Trivero, P. (2000). Oil spill detection using marine SAR images. International Journal of Remote Sensing, 21(18), 3561–3566.

    Article  Google Scholar 

  • Friedman, K. S., Pitchel, W. G., Clemente-Colon, P., & Li, X. (2002). GoMEx—an experimental GIS system for the Gulf of Mexico Region using SAR and additional satellite and ancillary data. In International Geoscience and Remote Sensing Symposium, IGARSS ’02, 6, pp. 3343–3345.

  • Girard-Ardhuin, F., Mercier, G., & Garello, R. (2003). Oil slick detection by SAR imagery: Potential and limitation. In Proc. OCEANS 2003, 1, pp 164–169.

  • Girard-Ardhuin, F., Mercier, G., Collard, F., & Garello, R. (2005). Operational oil-slick characterization by SAR imagery and synergistic data. IEEE Journal of Oceanic Engineering, 30(3), 487–495.

    Article  Google Scholar 

  • Gonzalez, R. C. , & Richards, E. W. (1992). Digital image processing. Reading: Addison-Wesley, p. 716.

    Google Scholar 

  • Greinert, J., Artemov, Y., Egorov, V., De Batist, M., & McGinnis, D. (2006). 1300-m-high rising bubbles from mud volcanoes at 2080m in the Black Sea: Hydroacoustic characteristics and temporal variability. Earth and Planetary Science Letters, 244, 1–15.

    Article  CAS  Google Scholar 

  • Haralick, R. M. , Shanmugan, K., & Dinstein, I. (1973). Textural features for image classification. IEEE Transactions on Systems, Man and Cybernetics, SMC-3(6), 610–621.

    Article  Google Scholar 

  • Hofmann, T., Pizucha, J., & Buchman, J. (1998). Unsupervised texture segmentation in a deterministic annealing framework. IEEE Transactions on Pattern nalysis and Machine Intelligence, 20(8), 803–818.

    Article  Google Scholar 

  • Hovland, H. A., Johannessen, J. A., & Digranes, G. (1994). Slick detection in SAR images. In Proc. IGARSS’94, 4, pp. 2038–2040.

  • Huang, B., Li, H., & Huang, X. (2005). A level set method for oil slick segmentation in SAR images. International Journal of Remote Sensing, 26(6), 1145–1156.

    Article  Google Scholar 

  • Karantzalos, K., & Argialas, D. (2008). Automatic detection and tracking of oil spills in SAR imagery with level set segmentation. International Journal of Remote Sensing, 29(21), 6281–6296.

    Article  Google Scholar 

  • Karathanassi, V., Topouzelis, K., Pavlakis, P., & Rokos, D. (2006). An object-oriented methodology to detect oil spills. International Journal of Remote Sensing, 27(23), 5235–5251.

    Article  Google Scholar 

  • Keramitsoglou, I., Cartalis, C., & Kiranoudis, C. T. (2006). Automatic identification of oil spills on satellite images. Environmental Modelling & Software, 21, 640–652.

    Article  Google Scholar 

  • Leifer, I., Luyendyk, B., & Broderick, K. (2006). Tracking an oil slick from multiple natural sources, Coal Oil Point, California. Marine and Petroleum Geology, 23, 621–630.

    Article  CAS  Google Scholar 

  • Li, F., & Shen, C. (2010). A two-stage method for oil slick segmentation. International Journal of Remote Sensing, 31(15), 4217–4226

    Article  Google Scholar 

  • Lombardo, P., & Oliver, C. J. (2000). Optimum detection and segmentation of oil-slicks using polarimetric SAR data. IEE Proc.-Radar, Sonar Navigation, 147(6), 309–321.

    Article  Google Scholar 

  • Macdonald, R., Leifer, I., Sassen, R., Stine, P., Mitchell, R., & Guinasso, J. R. (2002). Transfer of hydrocarbons from natural seeps to the water column and atmosphere. Geofluids, 2, 95–107.

    Article  CAS  Google Scholar 

  • Mao, J., & Jain, A. (1992). Texture classification and segmentation using multiresolution simultaneous autoregressive models. Pattern Recognition, 25, 173–188.

    Article  Google Scholar 

  • Meinel, G., & Neubert, M. (2004). A comparison of segmentation programs for high resolution remote sensing data. In Proceedings of the ISRPS 2004 annual conference, Istanbul, Turkey, pp. 19–23.

  • Mouche, A. A., Hauser, D., Daloze, J., & Guerin, C. (2005). Dual-polarization measurements at C-Band over the ocean: Results from airborne radar observations and comparison with ENVISAT ASAR data. IEEE Transactions On Geoscience and Remote Sensing, 43(4).

  • Nirchio, F., Sorgente, M., Giancaspro, A., Bianmino, W., Parisato, E., Ravera, R., et al. (2005). Automatic detection of oil spills from SAR images. International Journal of Remote Sensing, 26(6), 1157–1174.

    Article  Google Scholar 

  • O’Brein, G. W., Lawrence, G. M., Williams, A. K., Glenn, K., Barrett, A. G., Lech, M., et al. (2005). Yampi Shelf, Browse Basin, North-West Shelf, Australia: A test-bed for constraining hydrocarbon migration and seepage rates using combinations of 2D and 3D seismic data and multiple, independent remote sensing technologies. Marine and Petroleum Geology, 22, 517–549.

    Article  Google Scholar 

  • Okay, A. I., Şengör, A. M. C., & Görür, N. (1994). Kinematic history of the opening of the Black Sea and its effect on the surrounding regions. Geology, 22, 267–270.

    Article  Google Scholar 

  • Pellemans, A. H. J. M., Bos, W. G., Konnings, H., & Van Swol, R. W. (1995). Oil spill detection on the North Sea using ERS-1 SAR data. Beleids Commisie Remote Sensing, BCRS report, pp. 94–30.

  • Roberts, D. G. (1998). Regional and petroleum geology of the Black Sea and surrounding region. Marine and Petroleum Geology, 15(4), 381–383.

    Article  Google Scholar 

  • Robinson, A. G., Rudat, J. H., Banks, C. J., & Wiles, R. L. F. (1996). Petroleum geology of the Black Sea. Marine and Petroleum Geology, 13(2), 195–223.

    Article  CAS  Google Scholar 

  • Rollet, N., Logan, G. A., Kennard, J. M., O’Brein, P. E., Jones, A. T., & Sexton, M. (2006). Characterisation and correlation of active hydrocarbon seepage using geophysical data sets: An example from the tropical, carbonate Yampi Shelf, Northwest Australia. Marine and Petroleum Geology, 23, 145–164.

    Article  Google Scholar 

  • Rudorff, F. M., & Gherardi, D. F. M. (2008). Coral reef detection using SAR/RADARSAT-1 images at Costa dos Corais, PE/AL, Brazil. Brazilian Journal of Oceanography, 56(2), 85–96.

    Article  Google Scholar 

  • Russ, J. C. (1992). The image processing handbook. Boca Raton: CRC, p. 445.

    Google Scholar 

  • Ryerson, R. A. (1998). Manual of remote sensing: Imaging radar, vol. 2. New York: American Society for Photogrammetry and Remote Sensing, Wiley.

    Google Scholar 

  • Shu, Y., Li, J., Yousif, H., & Gomeset, G. (2010). Dark-spot detection from SAR intensity imagery with spatial density thresholding for oil-spill monitoring. Remote Sensing of Environment, 114, 2026–2035.

    Article  Google Scholar 

  • Smith, A. J. E., & Melger, F. J. (2003). Using the cross-spectral phase to filter slicks in the ENVISAT ASAR wave mode product. International Journal of Remote Sensing, 24(24), 5391–5396.

    Article  Google Scholar 

  • Solberg, A. H. S., Storvik, G., Solberg, R., & Volden, E. (1999). Automatic detection of oil spills in ERS SAR images. IEEE Transactions on Geoscience and Remote Sensing, 37(4), 1916–1924.

    Article  Google Scholar 

  • Solberg, A. H. S., Brekke, C., & Husøy, P. O. (2007). Oil spill detection in Radarsat and Envisat SAR images. IEEE Transactions on Geoscience and Remote Sensing, 45(3), 746–755.

    Article  Google Scholar 

  • Topouzelis, K. N. (2008). Oil spill detection by SAR images: Dark formation detection, feature extraction and classification algorithms. Sensors, 8, 6642–6659.

    Article  Google Scholar 

  • Wackerman, C. C. (1992). Digital SAR image formation. In F. D. Carsey (Ed.), Microwave remote sensing if sea ice. Geophysical monograph 68 (pp. 105–110). Washington, DC: AGU.

    Chapter  Google Scholar 

  • Williams, A., & Lawrence, G. (2002). The role of satellite seep detection in exploring the South Atlantic’s ultradeep water. In D. Schumacher, L. A. LeSchack (Eds.), Surface exploration case histories: Applications of geochemistry, magnetics, and remote sensing. AAPG Studies in Geology No. 48 and SEG Geophysical References Series No. 11 (pp. 327–344). Boulder: AAPG.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Lutfi Süzen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akar, S., Süzen, M.L. & Kaymakci, N. Detection and object-based classification of offshore oil slicks using ENVISAT-ASAR images. Environ Monit Assess 183, 409–423 (2011). https://doi.org/10.1007/s10661-011-1929-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-1929-6

Keywords

Navigation