Skip to main content

Advertisement

Log in

Spatial distributions and eco-partitioning of soil biogeochemical properties in the Everglades National Park

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Large-scale ecosystem restoration efforts, such as those in the Florida Everglades, can be long-term and resource intensive. To gauge success, restoration efforts must have a means to evaluate positive or negative results of instituted activities. Edaphic properties across the Everglades landscape have been determined to be a valuable metric for such evaluation, and as such, a baseline condition from which to make future comparisons and track ecosystem response is necessary. The objectives of this work were to document this baseline condition in the southern most hydrologic unit of the Everglades, Everglades National Park (ENP), and to determine if significant eco-partitioning of soil attributes exists that would suggest the need to focus monitoring efforts in particular eco-types within the ENP landscape. A total of 342 sites were sampled via soil coring and parameters such as total phosphorus (TP), total nitrogen (TN), total carbon (TC), total calcium, total magnesium, and bulk density were measured at three depth increments in the soil profile (floc, 0–10 cm, and 10–20 cm). Geostatistical analysis and GIS applications were employed to interpolate site-specific biogeochemical properties of soils across the entire extent of the ENP. Spatial patterns and eco-type comparisons suggest TC and TN to be highest in Shark River Slough (SRS) and the mangrove interface (MI), following trends of greatest organic soil accumulation. However, TP patterns suggest greatest storages in MI, SRS, and western marl and wet prairies. Eco-partitioning of soil constituents suggest local drivers of geology and hydrology are significant in determining potential areas to focus monitoring for future change detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amador, J. A., & Jones, R. D. (1995). Carbon mineralization in pristine and phosphorus enriched peat soils of the Florida Everglades. Soil Science, 159, 129–141.

    Article  CAS  Google Scholar 

  • Anderson, J. M. (1976). An ignition method for determination of total phosphorus in lake sediments. Water Research, 10, 329–331.

    Article  Google Scholar 

  • Browder, J., & Ogden, J. C. (1999). The natural South Florida system II: Pre-drainage ecology. Urban Ecosystems, 3, 125–158.

    Article  Google Scholar 

  • Bruland, G. L., Grunwald, S., Osborne, T. Z., Reddy, K. R., & Newman, S. (2006). Spatial distribution of soil properties in Water Conservation Area 3 of the Everglades. Soil Science Society of American Journal, 70, 1662–1676.

    Article  CAS  Google Scholar 

  • Bruland, G. L., Osborne, T. Z., Reddy, K. R., Grunwald, S., Newman, S., & DeBusk, W. F. (2007). Recent changes in soil total phosphorus in the Everglades: Water Conservation Area 3A. Environmental Monitoring and Assessment, 129, 379–395.

    Article  CAS  Google Scholar 

  • Chambers, R. M., & Pederson, K. A. (2006). Variation in soil phosphorus, sulfur, and iron pools among south Florida wetlands. Hydrobiologia, 569, 63–70.

    Article  CAS  Google Scholar 

  • Chen, R. H., & Twilley, R. R. (1999). A simulation model of organic matter and nutrient accumulation in mangrove wetland soils. Biogeochemistry, 44, 93–118.

    Google Scholar 

  • Chen, M., Ma, L. Q., & Li, Y. C. (2000). Concentrations of P, K, Al, Fe, Mn, Cu, Zn, and As in marl soils from south Florida. Soil and Crop Sciences Society of Florida Proceedings, 59, 124–129.

    Google Scholar 

  • Childers, D. L., Doren, R. F., Jones, R., Noe, G. B., Rugge, M., & Scinto, L. J. (2003). Decadal change in vegetation and soil phosphorus pattern across the Everglades landscape. Journal of Environmental Quality, 32, 344–362.

    Article  CAS  Google Scholar 

  • Corstanje, R., Grunwald, S., Reddy, K. R., Osborne, T. Z., & Newman, S. (2006). Assessment of the spatial distribution of soil properties in a Northern Everglades marsh. Journal of Environmental Quality, 35, 938–949.

    Article  CAS  Google Scholar 

  • Davis, S. M. (1994). Phosphorus inputs and vegetation sensitivity in the Everglades. In: S. M. Davis, & J. C. Ogden (Eds.), Everglades: The ecosystem and its restoration (p. 826). Delray Beach: St. Lucy Press.

    Google Scholar 

  • Davis, S. M., & Ogden, J. C. (Eds.) (1994). Everglades: The Ecosystem and Its Restoration. St. Lucy Press, Delray Beach, p 826.

    Google Scholar 

  • Davis, S. M., Gaiser, E. E., Loftus, W. F., & Huffman, A. E. (2005a). Southern marl prairies conceptual ecological model. Wetlands, 25, 821–831.

    Article  Google Scholar 

  • Davis, S. M., Childers, D. L., Lorenze, J. J., Wanless, H. R., & Hopkins, T. E. (2005b). A Conceptual model of ecological interactions in the mangrove estuaries of the Florida Everglades. Wetlands, 25, 832–842.

    Article  Google Scholar 

  • Daoust, R. J., & Childers, D. L. (2004). Ecological effects of low level phosphorus additions on two plant communities in a neotropical freshwater wetland. Oecologia, 141, 672–686.

    Article  Google Scholar 

  • DeBusk, W. F., Reddy, K. R., Koch, M. S., & Wang, Y. (1994). Spatial patterns of soil phosphorus in Everglades Water Conservation Area 2A. Soil Science Society of America Journal, 58, 543–552.

    Article  Google Scholar 

  • Flora, M. D., & Rosendahl, P. C. (1982). Historical changes in conductivity and ionic characteristics of the source water for Shark River Slough, Everglades National Park, Florida, USA. Hydrobiologia, 97, 249–254.

    Article  CAS  Google Scholar 

  • Gleason, P. (1972). The origin, sedimentation, and stratigraphy of a calcitic mud located in the southern freshwater Everglades. Doctoral dissertation. Pennsylvania State University, University Park, PA, USA.

  • Koch, M. S., & Reddy, K. R. (1992). Distribution of soil and plant nutrients along a trophic gradient in the Florida Everglades. Soil Science Society of America Journal, 56, 1492–1499.

    Article  Google Scholar 

  • Koch, M. S., & Snedaker, S. C. (1997). Factors influencing Rhizophora mangle L. seedlings development into the sapling stage across resource and stress gradients in subtropical Florida. Biotropica, 29, 427–439.

    Article  Google Scholar 

  • Marchant, B. P., Newman, S., Corstanje, R., Reddy, K. R., Osborne, T. Z., & Lark, R. M. (2009). Spatial monitoring of a non-stationary soil property: Phosphorus in a Florida water conservation area. European Journal of Soil Science, 60, 757–769.

    Article  CAS  Google Scholar 

  • Mancera Pineda, J. E., Twilley, R. R., & Rivera-Monroy, V. H. (2009). Carbon (δ13C) and Nitrogen (δ15N) isotopic discrimination in mangroves in Florida coastal Everglades as a function of environmental stress. Contributions of Marine Science, 38, 109–129.

    Google Scholar 

  • Miao, S. L., & Sklar, F. H. (1998). Biomass and nutrient allocation of sawgrass and cattail along a nutrient gradient in the Florida Everglades. Wetlands Ecosystem and Management, 5, 245–264.

    Article  Google Scholar 

  • Neto, R. R., Mead, R. N., Louda, J. W., & Jaffe, R. (2006). Organic biogeochemistry of detrital flocculent material (floc) in a subtropical, coastal wetland. Biogeochemistry, 77, 283–304.

    Article  CAS  Google Scholar 

  • Newman, S., Grace, J. B., & Kobel, J. W. (1996). Effects of nutrients and hydroperiod on Typha, Cladium, and Eleocharis: Implications for Everglades restoration. Ecological Application, 6, 774–783.

    Article  Google Scholar 

  • Newman, S., Reddy, K. R., DeBusk, W. F., & Wang, Y. (1997). Spatial distribution of soil nutrients in a northern Everglades marsh: Water Conservation Area 1. Soil Science Society of America Journal, 61, 1275–1283.

    Article  CAS  Google Scholar 

  • Newman, S., Schuette, J., Grace, J. B., Rutchey, K., Fontaine, T., Reddy, K. R., et al. (1998). Factors influencing cattail abundance in the northern Everglades. Aquatic Botany, 60, 265–280.

    Article  Google Scholar 

  • Noe, G. B., Childers, D. L., & Jones, R. D. (2001). Phosphorus biogeochemistry and the impact of phosphorus enrichment: Why is the Everglades so unique? Ecosystems, 4, 603–624.

    Article  CAS  Google Scholar 

  • Noe, G. B., Childers, D. L., Edwards, A. L., Gaiser, E., Jayachandran, K., Lee, D., et al. (2002). Short term changes in phosphorus storage in an oligotrophic Everglades wetland ecosystem receiving experimental nutrient enrichment. Biogeochemistry, 59, 239–267.

    Article  CAS  Google Scholar 

  • Obeysekera, J., Browder, J. A., Hornung, L., & Harwell, M. A. (1999). The natural South Florida system I: Climate, geology, and hydrology. Urban Ecosystems, 3, 223–244.

    Article  Google Scholar 

  • Ogden, J. C. (2005). Everglades ridge and slough conceptual ecological model. Wetlands, 25, 810–831.

    Article  Google Scholar 

  • Olmstead, I. C., & Loope, L. L. (1984). Plant communities of Everglades National Park. In: P. J. Gleasn (Ed.), Environments of South Florida, Past and Present II (pp. 167–184). Coral Gables: Miami Geologic Society.

    Google Scholar 

  • Poret, N., Twilley, R. R., Rivera-Monroy, V. H., & Coronado-Molina, C. (2006). Belowground decomposition of mangrove roots in Florida coastal Everglades. Estuaries and Coasts, 30, 491–496.

    Article  Google Scholar 

  • Qualls, R. G., & Richardson, C. J. (1995). Forms of soil phosphorus along a nutrient enrichment gradient in the northern Everglades. Soil Science, 160, 183–197.

    Article  CAS  Google Scholar 

  • Reddy, K. R., DeLaune, R., DeBusk, W. F., & Koch, M. S. (1993). Long term nutrient accumulation rates in the Everglades. Soil Science Society of America Journal, 57, 1147–1155.

    Article  CAS  Google Scholar 

  • Reddy, K. R., Wang, Y., DeBusk, W. F., & Newman, S. (1994). Physico-chemical properties of soils in Water Conservation Area 3 (WCA-3) of the Everglades. Final Report. South Florida Water Management District, West Palm Beach, FL.

  • Reddy, K. R., White, J. R., Wright, A., & Chua, T. (1999). Influence of phosphorus loading on microbial processes in the soil and water column of wetlands. In K. R. Reddy, G. A. O’Connor, & C. L. Shelske (Eds.), Phosphorus Biogeochemistry of Subtropical Ecosystems (pp. 249–273). New York: Lewis Publishers.

    Google Scholar 

  • Reddy, K. R., Newman, S., Grunwald, S., Osborne, T. Z., Corstanje, R., Bruland, G., et al. (2005). Spatial distribution of soil nutrients in the Greater Everglades Ecosystem. Final Report. South Florida Water Management District, West Palm Beach, FL.

  • Rivera-Monroy, V. H., Twilley, R. R., Davis, S. E., Childers, D. L., Simrad, M., Chambers, R., et al. (2011). The role of the Everglades mangrove ecotone region (EMER) in regulating nutrient cycling and wetland productivity in South Florida. Critical Reviews in Environmental Science and Technology, 41(S1).

  • Rivero, R. G., Grunwald, S., Osborne, T. Z., Reddy, K. R., & Newman, S. (2007). Characterization of the spatial distribution of soil properties in Water Conservation Area 2A, Everglades, Florida. Soil Science, 172, 149–166.

    Article  CAS  Google Scholar 

  • Scheidt, D. J., & Kalla, P. I. (2007). Everglades ecosystem assessment: water management and quality, eutrophication, mercury contamination, soils and habitat: monitoring for adaptive management: A R-EMAP status report. USEPA Region 4, Athens, GA. EPA 904-R-07-001. 98 pp.

  • Scheidt, D., Stober, J., Jones, R., & Thornton, K. (2000). South Florida ecosystem assessment: Evergaldes water management, soil loss, eutrophication and habitat. Report No. 904-R-00-003. US Environmental Protection Agency, Athens, GA.

  • SFWMD (South Florida Water Management District) (1992). Surface water improvement and management plan for the Everglades. Supporting information Document. South Florida Water Management District, West Palm Beach, Florida, USA.

  • US Environmental Protection Agency (1993a). Methods for the Determination of Inorganic Substances in Environmental Samples. Cincinnati: Environmental Monitoring Systems Lab.

    Google Scholar 

  • US Environmental Protection Agency (1993b). Methods for the Determination of Metals in Environmental Samples. Cincinnati: Environmental Monitoring Systems Lab.

    Google Scholar 

  • US Geological Survey 2008. Everglades Depth Estimation Network (EDEN). Online database http://sofia.usgs.gov/eden.

  • Watts, D., Cohen, M. J., Heffernan, J., Osborne, T. Z., & Clark, M. W. (2010). Hydrologic modification and the loss of self-organized patterning in the ridge slough mosaic of the Everglades. Ecosystems, 13, 813–827.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd Z. Osborne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osborne, T.Z., Bruland, G.L., Newman, S. et al. Spatial distributions and eco-partitioning of soil biogeochemical properties in the Everglades National Park. Environ Monit Assess 183, 395–408 (2011). https://doi.org/10.1007/s10661-011-1928-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-1928-7

Keywords

Navigation