Skip to main content
Log in

Historical contamination of the Anacostia River, Washington, D.C.

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The tidal Anacostia River in Washington DC has long been impacted by various sources of chemical pollution over the past 200 years. To explore more recent inputs of various chemicals, six sediment cores were collected for dating and chemical analysis in the downstream section of the tidal Anacostia River. Profiles of contaminants in sediment cores can be useful in determining management direction and effectiveness of pollution controls over time. There were two main objectives for this investigation: (1) determine current sediment contaminant levels; (2) determine a historical perspective of the sediment changes in contamination using 137Cs and 210Pb dating. The determination of an age–depth relationship using 210Pb and 137Cs dating gave somewhat different results, suggesting that the assumptions of 210Pb dating were not met. Using the 137Cs horizon allowed an assignment of approximate sediment accumulation rates and hence an age–depth relationship to contaminant events in the upper portions of the cores. Total PAHs showed higher concentrations at depth and lower surface concentrations. In the upper sections, PAHs were a mixture of combustion and petrogenic sources, while at depth the signature appeared to be of natural origins. Total PCBs, DDTs and chlordane concentrations showed a maximum in recent sediments, decreasing towards the surface. PCBs had lower molecular weight congeners near the surface and higher molecular weights at depth. A phthalate ester, DEHP, appeared in the mid 1940–1950s, and decreased towards the surface. Trace elements fell roughly into three groups. Fe, Mn, and As were in approximately constant proportion to Al, except in some deeper, sandy sediments, where they showed enrichments linked to redox conditions. Ag, Cd, Cu, Hg, Pb, and Zn had low concentrations in the deepest sediments, high concentrations at mid-depths, and declines to intermediate levels at the surface. Ni and Cr followed neither of these patterns closely. We observed that many contaminants appeared in the Anacostia sediments at various times, and reached relatively high concentrations in the past, but are now showing declines in loadings. In some cases, such as PCBs, DDT, chlordane, and Pb from leaded gasoline, these declines can be clearly linked to the discontinuation of their use for environmental reasons. For other contaminants (e.g., PAHs, DEHP, selected metals) these declines are more likely the result of changes in production, usage and waste control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreae, M. O. (1977). Determination of arsenic species in natural waters. Analytical Chemistry, 49, 820–823.

    Article  CAS  Google Scholar 

  • Appleby, P. G., & Oldfield, F. (1978). The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena, 5, 1–8.

    Article  CAS  Google Scholar 

  • Ashley, J. T. F., & Baker, J. E. (1999). Hydrophobic organic contaminants in surficial sediments of Baltimore Harbor: Inventories and sources. Environmental Toxicology and Chemistry, 18, 938–849.

    Article  Google Scholar 

  • ATSDR (1993). Toxicological profile for di-(2-ethylhexyl) phthalate (Update) (p. 147). TP-92/05. U.S. Department of Health and Human Services: Public Health Service, Agency for Toxic Substances and Disease Registry. Atlanta, GA, April 1993.

  • ASTDR (1998). Agency for toxic substances and disease registry. http://www.atsdr.cdc.gov/hac/pha/pha.asp?docid=1341&pg=0

  • Benoit, G., & Hemond, H. F. (1988). Improved methods for the measurement of 210Po, 210Pb and 226Ra. Limnology and Oceanography, 33, 1618–1622.

    Article  CAS  Google Scholar 

  • Benninger, L. K., & Krishnaswami, S. (1981). Sedimentary processes in the inner New York Bight: Evidence from excess 210Pb and 239,240Pu. Earth and Planetary Science Letters, 53, 158–174.

    Article  CAS  Google Scholar 

  • Budzinski, H., Jones, I., Bellocq, J., Pierard, C., & Garrigues, P. (1997). Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary. Marine Chemistry, 58, 85–97.

    Article  CAS  Google Scholar 

  • Braman, R. S., Johnson, D. L., Foreback, C. C., Ammons, J. M., & Bricker, J. L. (1977). Separation and determination of nanogram amounts of inorganic arsenic and methylarsenic compounds. Analytical Chemistry, 49, 621–625.

    Article  CAS  Google Scholar 

  • Brännvall, M.-L., Bindler, R., Emteryd, O., Nilsson, M., & Renberg, I. (1997). Stable isotope and concentration records of atmospheric lead pollution in peat and lake sediments in Sweden. Water, Air, & Soil Pollution, 100, 243–252.

    Article  Google Scholar 

  • Breivik, K., Sweetman, A., Pacyna, J. M., & Jones, K. C. (2002). Towards a global historical emission inventory for selected PCB congeners—a mass balance approach: 2. Emissions. The Science of The Total Environment, 290, 199–224.

    Article  CAS  Google Scholar 

  • Brush, G. S. (1984). Patterns of recent sediment accumulation in Chesapeake Bay (Virginia-Maryland, U.S.A.) tributaries. Chemical Geology, 44, 227–242.

    Article  CAS  Google Scholar 

  • Brown, J. F., Wagner, R. E., Bedard, D. L., Brennan, M. J., Carnahan, J. C., May, R. J., et al. (1984). PCB transformations in upper Hudson sediments. Northeastern Environmental Science, 3, 167–179.

    CAS  Google Scholar 

  • Brown, J. F., Bedard, D. L., Brennan, M. J., Carnahan, J. C., Feng, H., & Wagner, R. E. (1987). Polychlorinated biphenyl dechlorination in aquatic sediments. Science, 236, 709–712.

    Article  CAS  Google Scholar 

  • Casagrande, A. (1948). Classification and identification of soils. Transactions of the American Society of Civil Engineers, 113, 901–930.

    Google Scholar 

  • Cornwell, J. C., Stevenson, J. C., Conley, D. J., & Owens, M. (1996). A sediment chronology of Chesapeake Bay eutrophication. Estuaries, 19, 488–499.

    Article  CAS  Google Scholar 

  • Cooper, S. R., & Brush, G. S. (1991). Long-term history of Chesapeake Bay anoxia. Science, 254, 992–996.

    Article  CAS  Google Scholar 

  • Dearth, M. A., & Hites, R. A. (1991). Complete analysis of technical chlordane using negative ionization mass spectrometry. Environmental Science Technology, 25, 245–254.

    Article  CAS  Google Scholar 

  • DeFries, R. S. (1986). Effects of land-use history on sedimentation in the Potomac estuary, Maryland (p. 23). U.S. Geological Survey Water-Supply Paper 2234-K.

  • District of Columbia Department of Health (DC DOH) (2006). Public health advisory. DC Department of Health urges limited consumption of Anacostia and Potomac river fish. http://ddoe.dc.gov/ddoe/cwp/view,a,1209,q,494756.asp.

  • EPA (1994). Chesapeake bay program. Chesapeake bay toxics loading and release inventory: Basinwide toxics reductions strategy commitment report. United States Environmental Protection Agency, CBP/TRS 102/94; Chesapeake Bay Program, Annapolis, MD.

  • Foster, G. D., Roberts, E. C., Gruessner, B., & Velinsky, D. J. (2000). Hydrogeochemistry and transport of organic contaminants in an urban watershed of Chesapeake Bay. Applied Geochemistry, 15, 901–915.

    Article  CAS  Google Scholar 

  • Flynn, W. W. (1968). The determination of low levels of polonium-210 in environmental materials. Analytica Chimica Acta, 43, 221–227.

    Article  CAS  Google Scholar 

  • Harris, C. A., Henttu, P., Parker, M. G., & Sumpter, J. P. (1997). The estrogenic activity of phthalate esters in vitro. Environmental Health Perspectives, 105, 802–811.

    Article  CAS  Google Scholar 

  • Hwang, H.-M., & Foster, G. D. (2008). Polychlorinated biphenyls in stormwater runoff entering the tidal Anacostia River, Washington, DC, through small urban catchments and combined sewer outfalls. Journal of Environmental Science and Health, 43, 567–575.

    Article  CAS  Google Scholar 

  • Incorvia Mattina, M. J., Iannucci-Berger, W., Dykas, L., & Pardus, J. (1999). Impact of long-term weathering, mobility, and land-use on chlordane residues in soil. Environmental Science and Technology, 33, 2425–2431.

    Article  Google Scholar 

  • International Nickel Study Group (INSG) (2006). http://www.insg.org.

  • Kim, G., Hussain, N., Scudlark, J. R., & Church, T. M. (2000). Factors influencing the atmospheric depositional fluxes of stable Pb, 210Pb, and 7Be into Chesapeake Bay. Journal of Atmospheric Chemistry, 36, 65–79.

    Article  CAS  Google Scholar 

  • Kucklick, J. R., Harvey, H. R., Ostrom, P. H., Ostrom, N. E., & Baker, J. E. (1996). Organochlorine dynamics in the pelagic food web of Lake Baikal. Environmental Toxicology and Chemistry, 15, 1388–1400.

    Article  CAS  Google Scholar 

  • Lima, A. L., Eglinton, T. I., Reddy, C. M. (2003). High-resolution record of pyrogenic polycyclic aromatic hydrocarbon deposition during the 20th century. Environmental Science and Technology, 37, 53–61.

    Article  CAS  Google Scholar 

  • Long, G. R., Ayers, M. A., Callender, E., & Van Metre, P. C. (2003). Trends in chemical concentration in sediment cores from three lakes in New Jersey and one lake on Long Island, New York: U.S. Geological Survey Water-Resources Investigations Report 02-4727.

  • Mahler, B. J., Van Metre, P. C., Bashara, T. J., Wilson, J. T., & Johns, D. A. (2005). Parking lot sealcoat: An unrecognized source of urban polycyclic aromatic hydrocarbons. Environmental Science and Technology, 39, 5560–5566.

    Article  CAS  Google Scholar 

  • Maryland Department of the Environment (MDE) (2010). Total maximum daily loads of PCBs in the Northeast and Northwest branches of the non-tidal Anacostia River, Montgomery and Prince George’s Counties, Maryland. Public Draft, State of Maryland, MDE, Baltimore, MD.

  • Mason, R. P., Kim, E. H., & Cornwell, J. (2004). Metal accumulation in Baltimore Harbor: Current and past inputs. Applied Geochemistry, 19, 1801–1825.

    Article  CAS  Google Scholar 

  • Meijer, S. N., Halsall, C. J., Harner, T., Peters, A. J., Ockenden, W. A., Johnston, A. E., et al. (2001). Organochlorine pesticide residues in archived UK soil. Environmental Science and Technology, 35, 1989–1995.

    Article  CAS  Google Scholar 

  • McGee, B. L., Pinkney, A. E., Velinsky, D. J., Ashley, J. T. F., Fisher, D. J., Ferrington, L. C., et al. (2009). Using the sediment quality triad to characterize baseline conditions in the Anacostia River, Washington, DC. Environmental Monitoring and Assessment, 156, 51–67.

    Article  CAS  Google Scholar 

  • Munsell Color. (1990). Munsell soil color charts. Baltimore: Munsell Color.

    Google Scholar 

  • Officer, C. B., Lynch, D. R., Setlock, G. H., & Helz, G. R. (1984). Recent sedimentation rates in Chesapeake Bay. In V. S. Kennedy (Ed.), The estuary as a filter (pp. 131–157). New York: Academic.

    Google Scholar 

  • Panero, M., Boehme, S., & Muñoz, G. (2005). Pollution prevention and management strategies for polychlorinated biphenyls in the New York/New Jersey harbor. A Report from the Harbor Consortium of the New York Academy of Sciences. New York, New York: New York Academy of Sciences.

    Google Scholar 

  • Pinkney, A. E., Dobony, C. A., & Doelling Brown, P. (2001). Analysis of contaminant concentrations in fish tissue collected from the waters of the District of Columbia. Final report. U.S. Fish and Wildlife Service, Chesapeake Bay Field Office, Annapolis, MD. CBFO-C01-01b.

  • Pinkney, A. E., Harshbarger, J. C., May, E. B., & Reichert, W. L. (2004). Tumor prevalence and biomarkers of exposure and response in brown bullheads (Ameiurus nebulosus) from the Anacostia River, Washington, D.C. and Tuckahoe River, Maryland. Environmental Toxicology and Chemistry, 23, 638–647.

    Article  CAS  Google Scholar 

  • Quensen, J. F. III, Tiedje, J. M., Boyd, S. A. (1988). Reductive dechlorination of polychlorinated biphenyls by anaerobic microorganisms from sediments. Science, 242, 752–754.

    Article  CAS  Google Scholar 

  • Quensen, J. F. III, Boyd, S. A., & Tiedje, J. M. (1990). Dechlorination of four commercial polychlorinated biphenyl mixtures (Aroclors) by anaerobic microorganisms from sediments. Applied Environmental Microbiology, 56, 2360–2369.

    CAS  Google Scholar 

  • Reddy, C., Pearson, A., Xu, L., McNichol, A. P., Benner, B. A. Jr., Wise, S. A., et al. (2002). Radiocarbon as a tool to apportion the sources of polycyclic aromatic hydrocarbons and black carbon in environmental samples. Environmental Science and Technology, 36, 1774–1782.

    Article  CAS  Google Scholar 

  • Riedel, G. F., Sanders, J. G., & Osman, R. W. (1987). The effect of biological and physical disturbances on the transport of arsenic from contaminated sediments. Estuarine and Coastal Shelf Science, 25, 693–706.

    Article  CAS  Google Scholar 

  • Riedel, G. F., Sanders, J. G., & Osman, R. W. (1989). Role of three species of benthic invertebrates in the transport of arsenic from contaminated estuarine sediment. Journal of Experimental Marine Biology and Ecology, 134, 143–155.

    Article  Google Scholar 

  • Riedel, G. F., Sanders, J. G., & Osman, R. W. (1997). Biogeochemical control on the flux of trace elements from estuarine sediments: Water column oxygen and benthic infauna. Estuarine and Coastal Shelf Science, 44, 23–38.

    Article  CAS  Google Scholar 

  • Riedel, G. F., Sanders, J. G., Osman, R. W. (1999). Biogeochemical control on the flux of trace elements from estuarine sediments: Effects of seasonal and short-term anoxia. Marine Environmental Research, 47, 349–372.

    Article  CAS  Google Scholar 

  • Ritchie, J. C., & McHenry, R. J. (1990). Application of radioactive fallout cesium-137 for measuring soil erosion and sediment accumulation rates and patterns: A review. Journal of Environmental Quality, 19, 215–233.

    Article  CAS  Google Scholar 

  • Robbins, J. A. (1978). Geochemical and geophysical applications of radioactive lead. In J. O. Nraigu (Ed.), The biogeochemistry of lead in the environment (pp. 285–405). New York: Elsevier.

    Google Scholar 

  • Sanders, M., & Scott, S. G. (2002). Origin and distributions of polycyclic aromatic hydrocarbons in surficial sediments from the Savannah River. Archives of Environmental Contamination and Toxicology, 43, 438–448.

    Article  CAS  Google Scholar 

  • Santschi, P. H., Presley, B. J., Wade, T. L., Garcia-Romero, B., & Baskaran, M. (2001). Historical contamination of PAHs, PCBs, DDTs, and heavy metals in Mississippi River Delta, Galveston Bay and Tampa Bay sediment cores. Marine Environmental Research, 52, 51–79.

    Article  CAS  Google Scholar 

  • Scatena, F. N. (1987). Recent Sediment Accumulation in an Urban Tidal Embayment, Anacostia Maryland (pp. 100–120). Coastal Sediments 1987, American Society of Civil Engineers Coastal Sediments, 1987.

  • Schlekat, C. E., McGee, B. L., Boward, D. M., Reinharz, E., Wade, T. L., & Velinsky, D. J. (1994). Tidal river sediments in the Washington, D.C. area. III. Biological effects associated with sediment contamination. Estuaries, 17, 333–344.

    Article  Google Scholar 

  • Schropp, S. J., Lewis, F. G., Windom, H. L., Ryan, J. D., Calder, F. D., & Burney, L. C. (1990). Interpretation of metal concentrations in estuarine sediments of Florida using aluminum as a reference element. Estuaries, 13, 227–235.

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency (US EPA) (2007). Total maximum daily loads of polychorinated biphenyls (PCBs) for the tidal portions of the Potomac and Anacostia rivers in the District of Columbia, Maryland and Virginia. Region III, Washington, DC: Water Protection Division, US EPA.

    Google Scholar 

  • Van Loon, J. C. (1985). Selected methods of trace metal analysis: Biological and environmental samples. New York: Wiley.

    Google Scholar 

  • Van Metre, P. C., & Mahler, B. J. (2005). Trends in hydrophobic organic contaminants in urban and reference lake sediments across the United States, 1970–2001. Environmental Science and Technology, 39, 5567–5574.

    Article  Google Scholar 

  • Van Metre, P. C., Mahler, B. J., & Furlong, E. T. (2000). Urban sprawl leaves its’ PAH signature. Environmental Science and Technology, 34, 4064–4070.

    Article  Google Scholar 

  • Van Metre, P. C., Mahler, B. J., & Wilson, J. T. (2009). PAHs underfoot: Contaminated dust from coal–tar sealcoated pavement is widespread in the United States. Environmental Science and Technology, 43, 20–25.

    Article  Google Scholar 

  • Velinsky, D. J., & Ashley, J. T. F. (2001). Deposition and spatial distribution of sediment-bound contaminants in the Anacostia River, District of Columbia. Report No. 01-30. Final report submitted to the District of Columbia. Philadelphia, PA: Patrick Center for Environmental Research, The Academy of Natural Sciences.

    Google Scholar 

  • Velinsky, D. J., Ashley, J. T. F., & Riedel, G. R. (2007). Sediment contaminants in the upper tidal Potomac river, Washington, DC: Spatial and temporal trends. PCER Report #07-10. Final report submitted to Department of the Environment, District of Columbia, Washington, D.C.

  • Velinsky, D. J., & Cummins, J. C. (1996). Distribution of chemical contaminants in 1993-1995 wild fish species in the District of Columbia. ICPRB Report #96-1. Rockville, MD: Interstate Commission on the Potomac River Basin.

    Google Scholar 

  • Velinsky, D. J., Wade, T. L., Schlekat, C. E., McGee, B. L., & Preseley, B. J. (1994). Tidal river sediments in the Washington D.C. area: Distribution and sources of trace metals. Estuaries, 17, 305–320.

    Article  CAS  Google Scholar 

  • Velinsky, D. J., Wade, T. L., Gammisch, B., & Cornwell, J. (1997). Sediment deposition and inventory of chemical contaminants in the tidal Anacostia River, Washington, D.C. ICPRB Report #97-2. Rockville, MD: Interstate Commission on the Potomac River Basin.

    Google Scholar 

  • Venkatesan, M. I. (1988). Occurrence and possible sources of perylene in marine sediments—a review. Marine Chemistry, 25, 1–27.

    Article  CAS  Google Scholar 

  • Wade, T. L., Velinsky, D. J., Reinharz, E., & Schlekat, C. E. (1994). Tidal river sediments in the Washington, D.C. area. II. Distribution and sources of chlorinated and non-chlorinated aromatic hydrocarbons. Estuaries, 17, 321–333.

    Article  CAS  Google Scholar 

  • Wakeham, S. G., Schaffner, C., & Giger, W. (1980). Polycyclic aromatic hydrocarbons in recent lake sediments—II. Compounds derived from biogenic precursors during early diagenesis. Geochimica et Cosmochimica Acta, 44, 415–429.

    Article  CAS  Google Scholar 

  • Williams, M. T. (1942). A history of erosion in the Anacostia drainage basin. Washington, D.C.: The Catholic University of America Press.

    Google Scholar 

  • Wise, S. A., Benner, B. A., Byrd, G. D., Rebbert, R. E., & Schantz, M. M. (1988). Determination of polycyclic aromatic hydrocarbons in a coal tar standard reference material. Analytical Chemistry, 60, 887–894.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Velinsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velinsky, D.J., Riedel, G.F., Ashley, J.T.F. et al. Historical contamination of the Anacostia River, Washington, D.C.. Environ Monit Assess 183, 307–328 (2011). https://doi.org/10.1007/s10661-011-1923-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-1923-z

Keywords

Navigation