Environmental Monitoring and Assessment

, Volume 181, Issue 1–4, pp 205–223 | Cite as

The effects of subsampling and sampling frequency on the use of surface-floating pupal exuviae to measure Chironomidae (Diptera) communities in wadeable temperate streams

  • Raymond William BouchardJr.Email author
  • Leonard C. FerringtonJr.


Community, diversity, and biological index metrics for chironomid surface-floating pupal exuviae (SFPE) were assessed at different subsample sizes and sampling frequencies from wadeable streams in Minnesota (USA). Timed collections of SFPE were made using a biweekly sampling interval in groundwater-dominated (GWD) and surface-water-dominated (SWD) streams. These two types of stream were sampled because they support different Chironomidae communities with different phenologies which could necessitate sampling methodologies specific to each stream type. A subsample size of 300 individuals was sufficient to collect on average 85% of total taxa richness and to estimate most metrics with an error of about 1% relative to 1,000 count samples. SWD streams required larger subsample sizes to achieve similar estimates of taxa richness and metric error compared to GWD streams, but these differences were not large enough to recommend different subsampling methods for these stream types. Analysis of sample timing determined that 97% of emergence occurred from April through September. We recommend in studies where estimation of winter emergence is not important that sampling be limited to this period. Sampling frequency also affected the proportion of the community collected. To maximize the portion of the community, collected samples should be taken across seasons although no specific sampling interval is recommended. Subsampling and sampling frequency was also assessed simultaneously. When using a 300-count subsample, a 4-week sampling interval from April through September was required to collect on average 71% of the community. Due to differences in elements of the chironomid community evaluated by different studies (e.g., biological condition, phenology, and taxonomic composition), richness estimates are documented for five sampling intervals (2, 4, 6, 8, 10, and 12 weeks) and five subsample sizes (100, 200, 300, 500, and 1,000 counts). This research will enhance future studies by providing guidelines for tailoring SFPE methods to study specific goals and resources.


Chironomidae Surface-floating pupal exuviae Subsampling Sampling frequency Taxa richness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berg, M. B., & Hellenthal, R. A. (1991). Secondary production of Chironomidae (Diptera) in a north temperate stream. Freshwater Biology, 25, 497–505.CrossRefGoogle Scholar
  2. Berg, M. B., & Hellenthal, R. A. (1992). Life histories and growth of lotic chironomids (Diptera: Chironomidae). Annals of the Entomological Society of America, 85(5), 578–589.Google Scholar
  3. Bouchard, R. W., Jr. (2007). Phenology and taxonomic composition of lotic Chironomidae (Diptera) communities in contrasting thermal regimes. Ph.D. Thesis. St. Paul, Minnesota: Department of Entomology, University of Minnesota.Google Scholar
  4. Bouchard, R. W., Jr., Carrillo, M. A., & Ferrington, L. C., Jr. (2006). Lower lethal temperature for adult male Diamesa mendotae Muttkowski (Diptera: Chironomidae), a winter-emerging aquatic insect. Aquatic Insects, 28(1), 57–66.CrossRefGoogle Scholar
  5. Brundin, L. (1966). Transantarctic relationships and their significance, as evidenced by chironomid midges with a monograph of the subfamilies Podonominae and Aphroteniinae and the austral Heptagyiae. Kunglica Svenska Vetenskapsakademiens Handlingar, 11, 1–472 + 430 plates.Google Scholar
  6. Calle-Martínez, D., & Casas, J. J. (2006). Chironomid species, stream classification, and water-quality assessment: the case of 2 Iberian Mediterranean mountain regions. Journal of the North American Benthological Society, 25(2), 465–476.CrossRefGoogle Scholar
  7. Cao, Y., Larsen, D. P., & Thorne, R. S. (2001). Rare species in multivariate analysis for bioassessment: some considerations. Journal of the North American Benthological Society, 20(1), 144–153.CrossRefGoogle Scholar
  8. Chou, R. Y. M., Ferrington, L. C., Jr., Hayford, B. L., & Smith, H. M. (1999). Composition and phenology of Chironomidae (Diptera) from an intermittent stream in Kansas. Archiv für Hydrobiologie, 147(1), 35–64.Google Scholar
  9. Chutter, F. (1972). An empirical biotic index of the quality of water in South African streams and rivers. Water Research, 6(1), 19–30.CrossRefGoogle Scholar
  10. Coffman, W. P. (1973). Energy flow in a woodland stream ecosystem. II. The taxonomic composition and phenology of the Chironomidae as determined by the collection of pupal exuviae. Archiv für Hydrobiologie, 71, 281–322.Google Scholar
  11. Coffman, W. P., & Ferrington, L. C., Jr. (1996). Chironomidae. In R. W. Merritt, & K. W. Cummins (Eds.), An introduction to the aquatic insects of North America (pp. 635–754). Dubuque: Kendall/Hunt.Google Scholar
  12. Coffman, W. P., & de la Rosa, C. L. (1998). Taxonomic composition and temporal organization of tropical and temperate species assemblages of lotic Chironomidae. Journal of the Kansas Entomological Society, 71(4), 388–406.Google Scholar
  13. Cranston, P. S., Copper, P. D., Hardwick, R. A., Humphrey, C. L., & Dostine, P. L. (1997). Tropical acid streams—the chironomid (Diptera) response in northern Australia. Freshwater Biology, 37, 473–483.CrossRefGoogle Scholar
  14. Danks, H. V. (1971). Life history and biology of Einfeldia synchrona (Diptera: Chironomidae). Canadian Entomologist, 103, 1597–1606.CrossRefGoogle Scholar
  15. Ferrington, L. C., Jr. (2000). Hibernal emergence patterns of Chironomidae in lotic habitats of Kansas versus ambient air and water temperatures. In O. Hoffrichter (Ed.), Late Twentieth Century Research on Chironomidae: An Anthology from the 13th International Symposium on Chironomidae (pp. 375–382). Aachen: Shaker Verlag.Google Scholar
  16. Ferrington, L. C., Jr. (2007). Hibernal emergence patterns of Chironomidae in lotic habitats of Kansas versus substrate composition. In T. Andersen (Ed.), Contributions to the systematics and ecology of aquatic Diptera—A tribute to Ole A. Sæther (pp. 99–105). Columbus: Caddis.Google Scholar
  17. Ferrington, L. C., Jr., Blackwood, M. A., Wright, C. A., Crisp, N. H., Kavanaugh, J. L., & Schmidt, F. J. (1991). A protocol for using surface-floating pupal exuviae of Chironomidae for rapid bioassessment of changing water quality. In N. E. Peters, & D. E. Walling (Eds.), Sediment and stream water quality in a changing environment: trends and explanations (pp. 181–190). Oxfordshire: IAHS.Google Scholar
  18. Ferrington, L. C., Jr., Coffman, W. P., & Berg, M. B. (2008). Chironomidae. In R. W. Merritt, K. W. Cummins, & M. B. Berg (Eds.), An introduction to the aquatic insects of North America (pp. 847–853). Dubuque: Kendall/Hunt.Google Scholar
  19. Gendron, J., & Laville, H. (1995). Biodiversity and sampling frequency of the pupal exuviae of Chironomidae (Diptera) in a 4th order river. Archiv für Hydrobiologie, 135(2), 243–257.Google Scholar
  20. Hågvar, S., & Østbye, E. (1973). Notes on some winter-active Chironomidae. Norsk Entomologisk Tidsskrift, 20, 253–257.Google Scholar
  21. Hayes, B. P., & Murray, D. A. (1988). IX. Running waters (continued) diel variation in chironomid emergence and implications for the use of pupal exuviae in river classification. Verhandlungen der Internationale Vereinigung für Theoretische und Angewandte Limnologie, 23, 1261–1266.Google Scholar
  22. Hayford, B. L., & Ferrington, L. C., Jr. (2005). Biological assessment of Cannon Creek, Missouri by use of emerging Chironomidae (Insecta: Diptera). Journal of the Kansas Entomological Society, 78(2), 89–99.CrossRefGoogle Scholar
  23. Hilsenhoff, W. L. (1977). Use of arthropods to evaluate water quality of streams. Madison, Wisconsin: Department of Natural Resources.Google Scholar
  24. Hilsenhoff, W. L. (1987). An improved biotic index of organic stream pollution. Great Lakes Entomologist, 20(1), 31–39.Google Scholar
  25. Hudson, P. L., & Adams, J. V. (1998). Sieve efficiency in benthic sampling as related to chironomid head capsule width. Journal of the Kansas Entomological Society, 71(4), 456–468.Google Scholar
  26. Lehmann, J. (1971). The chironomids of the Fulda (systematic, ecological and faunistic investigations). Archiv für Hydrobiologie Supplementband, 37, 466–555.Google Scholar
  27. Lenat, D. R., & Folley, D. R. (1983). Lotic chironomids of the North Carolina mountains. Memoirs of the American Entomological Society, 34, 145–164.Google Scholar
  28. Magurran, A. E. (1988). Ecological diversity and its measurement. Princeton: Princeton University Press.Google Scholar
  29. Malard, F., Tockner, K., Dole-Oliver, J., & Ward, J. (2002). A landscape perspective of surface–subsurface hydrological exchanges in river corridors. Freshwater Biology, 47(4), 621–640.CrossRefGoogle Scholar
  30. Pantle, R., & Buck, H. (1955). Die biologische Überwachung der Gewässer und die Darstellung der Ergebnisse. Gas-und Wasserfach, 96, 1–604.Google Scholar
  31. Rabeni, C., & Wang, N. (2001). Bioassessment of streams using macroinvertebrates: Are the Chironomidae necessary? Environmental Monitoring and Assessment, 71(2), 177–185.CrossRefGoogle Scholar
  32. Raunio, J., & Muotka, T. (2005). The use of chironomid pupal exuviae in river biomonitoring: The importance of sampling strategy. Archiv für Hydrobiologie, 164(4), 529–545.CrossRefGoogle Scholar
  33. Raunio, J., Paavola, R., & Muotka, T. (2007a). Effects of emergence phenology, taxa tolerances and taxonomic resolution on the use of chironomid pupal exuvial technique in river biomonitoring. Freshwater Biology, 52, 165–176.CrossRefGoogle Scholar
  34. Raunio, J., Ihaksi, T., Haapala, A., & Muotka, T. (2007b). Within-and among-lake variation in benthic macroinvertebrate communities—comparison of profundal grab sampling and the chironomid pupal exuvial technique. Journal of the North American Benthological Society, 26(4), 708–718.CrossRefGoogle Scholar
  35. Rosenberg, D. M. (1992). Freshwater biomonitoring and Chironomidae. Netherlands Journal of Aquatic Ecology, 26(2–4), 101–122.CrossRefGoogle Scholar
  36. Rufer, M. R., & Ferrington, L. C., Jr. (2008). Sampling frequency required for chironomid community resolution in urban lakes with contrasting trophic states. Boletim do Museu Municipal do Funchal (História Natural) Supplement, 13, 77–84.Google Scholar
  37. Ruse, L. P. (2010). Classification of nutrient impact on lakes using the chironomid pupal exuvial technique. Ecological Indicators, 10, 594–601.CrossRefGoogle Scholar
  38. Ruse, L. P., & Wilson, R. S. (1984). The monitoring of river water quality within the Great Ouse Basin using the chironomid exuvial analysis technique. Water Pollution Control, 83, 116–135.Google Scholar
  39. Sealock, A. W., & Ferrington, L. C., Jr. (2008). Sampling efficiency of Chironomidae (Diptera) across disturbance gradients. Boletim do Museu Municipal do Funchal (História Natural) Supplement, 13, 85–92.Google Scholar
  40. Sovell, L. A., & Vondracek, B. (1999). Evaluation of the fixed-count method for Rapid Bioassessment Protocol III with benthic macroinvertebrate metrics. Journal of the North American Benthological Society, 18(3), 420–426.CrossRefGoogle Scholar
  41. Storey, A. W., & Pinder, L. C. V. (1985). Mesh-size and efficiency of sampling of larval Chironomidae. Hydrobiologia, 124, 193–197.CrossRefGoogle Scholar
  42. Systat Software (2008). SigmaPlot for Windows. Systat Software. Inc., Chicago, Ill.Google Scholar
  43. Thienemann, A. (1910). Das sammeln von Puppenhäuten der chironomiden. Eine bitte um Mitarbeit. Archiv für Hydrobiologie, 6, 213–214.Google Scholar
  44. Vilchez-Quero, A., & Lavandier, P. (1986). Composition et rythme journalier de la dérive des exuvies nymphales de Chironomidés dans le Guadalquivir (Sierra de Cazorla - Espagne). Annales de Limnologie, 22(3), 253–260.CrossRefGoogle Scholar
  45. Vinson, M. R., & Hawkins, C. P. (1996). Effects of sampling area and subsampling procedure in comparisons of taxa richness among streams. Journal of the North American Benthological Society, 15(2), 392–399.CrossRefGoogle Scholar
  46. Walsh, C. J. (1997). A multivariate method for determining optimal subsample size in the analysis of macroinvertebrate samples. Marine and Freshwater Research, 48, 241–248.CrossRefGoogle Scholar
  47. Wiederholm, T. (1986). Chironomidae of the Holarctic region: Part 2. pupae. Entomologica Scandinavica Supplement, 28, 1–482.Google Scholar
  48. Wilson, R. S. (1977). Chironomid pupal exuviae in the River Chew. Freshwater Biology, 7, 9–17.CrossRefGoogle Scholar
  49. Wilson, R. S. (1980). Classifying rivers using chironomid pupal exuviae. In D. A. Murray (Ed.), Chironomidae - ecology, systematics, cytology and physiology (pp. 209–216). Oxford, UK: Pergamon Press.Google Scholar
  50. Wilson, R. S. (1994). Monitoring the effect of sewage effluent on the Oxford Canal using chironomid pupal exuviae. Water and Environmental Management, 8, 171–182.CrossRefGoogle Scholar
  51. Wilson, R. S., & Bright, P. L. (1973). The use of chironomid pupal exuviae for characterizing streams. Freshwater Biology, 3, 283–302.CrossRefGoogle Scholar
  52. Wilson, R. S., & McGill, J. D. (1977). A new method of monitoring water quality in a stream receiving sewage effluent using chironomid pupal exuviae. Water Research, 11, 959–962.CrossRefGoogle Scholar
  53. Wilson, R. S., & Ruse, L. P. (2005). A guide to the identification of genera of chironomid pupal exuviae occurring in Britain and Ireland and their use in monitoring lotic and lentic freshwaters. Windermere: Freshwater Biological Association.Google Scholar
  54. Wright, C. A., Ferrington, L. C., Jr., & Crisp, N. H. (1996). Analysis of chlordane-impacted stream using chironomid pupal exuviae (Diptera: Chironomidae). Hydrobiologia, 318, 69–77.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Raymond William BouchardJr.
    • 1
    Email author
  • Leonard C. FerringtonJr.
    • 1
  1. 1.Department of EntomologyUniversity of MinnesotaSaint PaulUSA

Personalised recommendations