Skip to main content

Statistical analysis of PM10 concentrations at different locations in Malaysia

Abstract

Malaysia has experienced several haze events since the 1980s as a consequence of the transboundary movement of air pollutants emitted from forest fires and open burning activities. Hazy episodes can result from local activities and be categorized as “localized haze”. General probability distributions (i.e., gamma and log-normal) were chosen to analyze the PM10 concentrations data at two different types of locations in Malaysia: industrial (Johor Bahru and Nilai) and residential (Kota Kinabalu and Kuantan). These areas were chosen based on their frequently high PM10 concentration readings. The best models representing the areas were chosen based on their performance indicator values. The best distributions provided the probability of exceedances and the return period between the actual and predicted concentrations based on the threshold limit given by the Malaysian Ambient Air Quality Guidelines (24-h average of 150 μg/m3) for PM10 concentrations. The short-term prediction for PM10 exceedances in 14 days was obtained using the autoregressive model.

This is a preview of subscription content, access via your institution.

References

  1. Abas, M. R., Oros, D. R., & Simoneit, B. R. T. (2004). Biomass burning as the main source of organic aerosol particulate matter in Malaysia during haze episodes. Chemosphere, 55, 1089–1095.

    Article  Google Scholar 

  2. Abdel-Aziz, A., & Frey, H. C. (2003). Development of hourly probabilistic utility NOx emission inventories using time series techniques: part I—univariate approach. Atmospheric Environment, 37, 5379–5389.

    Article  CAS  Google Scholar 

  3. Afroz, R., Hassan, M. N., & Ibrahim, N. A. (2003). Review air pollution and health impacts in Malaysia. Environmental Research, 92(2), 71–77.

    Article  CAS  Google Scholar 

  4. Awang, M. B., Jaafar, A. B., Abdullah, A. M., Ismail, M. B., Hassan, M. N., Abdullah, R., et al. (2000). Air quality in Malaysia: Impacts, management issues and future challenges. Respiratory, 5, 183–196.

    CAS  Google Scholar 

  5. Ballester, E. B., iValls, G. C., Carrasco-Rodriguez, J. L., Olivas, E. S., & Valle-Tascon, S. D. (2002). Effective 1-day ahead prediction of hourly surface ozone concentrations in Eastern Spain using linear models and neural networks. Ecological Modelling, 156(1), 27–41.

    Article  Google Scholar 

  6. Box, G. E. P., & Jenkins, G. M. (1976). Time series analysis—Forecasting and control revised. San Francisco: Holden-Day Inc.

    Google Scholar 

  7. Carmona, R. A. (2004). Statistical analysis of financial data in S-plus. U.S.A.: Springer.

    Google Scholar 

  8. Comrie, A. C. (1997). Comparing neural network and regression models for RSPM forecasting. Journal of Air and Waste Management Association, 47, 513–529.

    Google Scholar 

  9. Chatfield, C. (2004). The analysis of time series—An introduction (6th Edn.). Florida: Chapman & Hall/CRC.

    Google Scholar 

  10. Chattopadhyay, G., & Chattopadhyay, S. (2009). Autoregressive forecast of monthly total ozone concentration—A neurocomputing approach. Computer and Geosciences, 35(9), 1925–1932.

    Article  CAS  Google Scholar 

  11. Chelani, A. B., & Devotta, S. (2006). Air quality forecasting using a hybrid autoregressive and nonlinear model. Atmospheric Environment, 40, 1774–1780.

    Article  CAS  Google Scholar 

  12. Christian, H., & Chrisian, H. (2002). Index forecasting and model selection. International Journal of Intelligent Systems in Accountly, Finance and Management, 11, 119–135.

    Article  Google Scholar 

  13. Cooray, T. M. J. A. (2008). Applied time series analysis and forecasting. Oxford: Alpha Science International Ltd.

    Google Scholar 

  14. Department of Environment (DoE), Malaysia (2002). Malaysia environmental quality report 2002. Kuala Lumpur: Department of Environment, Ministry of Sciences, Technology and the Environment, Malaysia.

  15. Department of Environment (DoE), Malaysia (2004). Malaysia environmental quality report 2004. Kuala Lumpur: Department of Environment, Ministry of Sciences, Technology and the Environment, Malaysia.

  16. Department of Environment (DoE), Malaysia (2008). Malaysia environmental quality report 2008. Kuala Lumpur: Department of Environment, Ministry of Sciences, Technology and the Environment, Malaysia.

  17. Evans, M., Hastings, N., & Peacock, B. (2000). Statistical distributions (3rd Edn.). New York: Wiley.

    Google Scholar 

  18. Fitri, M. D. N. F., Ramli, N. A., Yahaya, A. S., Sansuddin, N., Ghazali, N. A., & AlMadhoun, W. (2009). Monsoonal differences and probability distribution of PM10 concentration. Environmental Monitoring Assessment, 163(1–4), 655–667.

    Google Scholar 

  19. Fuller, D. O., & Murphy, K. (2006). The ENSO-fire dynamic in insular Southeast Asia. Climatic Change, 74(4), 435–455.

    Article  Google Scholar 

  20. Ghazali, N. A., Ramli, N. A., Yahaya, A. S., Md Yusof, N. F. F., Sansuddin, N., & Al Madhoun, W. A. (2010). Transformation of nitrogen dioxide into ozone and prediction of ozone concentrations using multiple linear regression techniques. Environmental Monitoring Assessment, 165(1–4), 475–489.

    Article  CAS  Google Scholar 

  21. Gilbert, O. R. (1987). Statistical method for environmental pollution monitoring. New York: Van Nostrand Reinhold Company Inc.

    Google Scholar 

  22. Goyal, P., Chan, A. T., & Jaiswal, N. (2006). Statistical models for the prediction of respirable suspended particulate matter in urban cities. Atmospheric Environment, 40, 2068–2077.

    Article  CAS  Google Scholar 

  23. Greene, W. H. (2003). Econometric analysis (5th Edn.). New Jersey: Prentice Hall.

    Google Scholar 

  24. Hamilton, J. (1994). Time series analysis. New Jersey: Princeton University Press.

    Google Scholar 

  25. Hyer, E. J., & Chew, B. N. (2010). Aerosol transport model evaluation of an extreme smoke episode in Southeast Asia. Atmospheric Environment, 44(11), 1422–1427.

    Article  CAS  Google Scholar 

  26. Jalil, A., & Mahmud, S. F. (2009). Enviroment Kuznets curve for CO2 emissions—A cointegration analysis for China. Energy Policy, 37(12), 5167–5172.

    Article  Google Scholar 

  27. Janacek, G. (2001). Practical time series. London: Arnold.

    Google Scholar 

  28. Jarque, C. M., & Bera, A. K. (1980). Efficient tests for normality, heteroscedasticity and serial independence of regression residuals. Economics Letters, 6, 255–259.

    Article  Google Scholar 

  29. Juneng, L., Latif, M. T., Tangang, F. T., & Mansor, H. (2009). Spatio-temporal characteristics of PM10 concentration across Malaysia. Atmospheric Environment, 43(30), 4584–4594.

    Article  CAS  Google Scholar 

  30. Kim Oanh, N. T., Upadhyay, N., Zhuang, Y. H., Hao, Z. P., Murthy, D. V. S., Lestari, P., et al. (2006). Particulate air pollution in six Asian cities—Spatial and temporal distributions and associated sources. Atmospheric Environment, 40, 3367–3380.

    Article  Google Scholar 

  31. Liang, W. M., Wei, H. Y., & Kuo, H. W. (2009). Association between daily mortality from respiratory and cardiovascular diseases and air pollution in Taiwan. Environmental Research, 109(1), 51–58.

    Article  CAS  Google Scholar 

  32. Lu, H. C., & Fang, G. C. (2003). Predicting the exceedances of critical PM10 concentration—A case study in Taiwan. Atmospheric Environment, 37, 3491–3499.

    Article  CAS  Google Scholar 

  33. Mage, D. T., & Ott, W. R. (1984). An evaluation of the method of fractiles moments and maximum likelihood for estimating parameters when sampling air quality data from a stationary lognormal distribution. Atmospheric Environment, 18, 163–171.

    Article  Google Scholar 

  34. Malaysian Meteorological Department (2008) Official website of Malaysia Meteorological Department (MMD): General Climate of Malaysia. Available online at http://www.met.gov.my/english/education/climate/climated.html, accessed on 1 February 2008.

  35. Pillai, P. S., & Moorthy, K. K. (2001). Aerosol mass—Size distributions at a tropical coastal station. Response to mesoscale and synoptic processes. Atmospheric Environment, 35, 4099–4122.

    Article  CAS  Google Scholar 

  36. Pillai, P. S., Babu, S. S., & Moorthy, K. K. (2002). A study of PM, PM10 and PM2.5 concentration at a tropical coastal station. Atmospheric Research, 61, 149–167.

    Article  CAS  Google Scholar 

  37. Portnov, B. A., Dubnov, J., & Barchana, M. (2009). Studying the association between air pollution and lung cancer incidence in a large metropolitan area using a Kernel density function. Socio-Economic Planning Sciences, 43(3), 141–150.

    Article  Google Scholar 

  38. Ramli, N. A., & Ibrahim, W. H. W. (2003). PM10 concentration measurements at four selected sites in Semenanjung Malaysia: A comparison between sites with different background. In Proceeding environment 2003, Pulau Pinang (pp. 236–238).

  39. Ramli, N. A., Wathern, P., Ibrahim, W. W. H., & Hamidi, A. A. (2001). Some observations on respirable particulate matter during 1997 haze event in Malaysia. In H. L. Koh, & Y. A. Hassan (Eds.), Proceeding of ecological and environmental modelling 2001, 3–4 September 2001 (pp. 226–234). USM Publisher. ISBN 983–861–245–6.

  40. Ruey, S. T. (2005). Analysis of financial time series (2nd Edn.). Hoboken: Wiley.

    Google Scholar 

  41. Ryan, W. (1995). Forecasting severe ozone episodes in the Baltimore metropolitan area. Atmospheric Environment, 29, 2387–2398.

    Article  CAS  Google Scholar 

  42. Sedek, J. N. M., Ramli, N. A., & Yahaya, A. S. (2006). Air quality predictions using lognormal distribution functions of particulate matter in Kuala Lumpur, Malaysia. Journal of Environmental Management, 7, 33–41.

    Google Scholar 

  43. Singh, K. P., Bartolucci, A. A., & Bae, S. (2001). Mathematical modeling of environmental data. Journal of Mathematical and Computer Modeling, 33, 793–800.

    Article  Google Scholar 

  44. Soleiman, A., Othman, M., Samah, A. A., Sulaiman, N. M., & Radojevic, M. (2003). The occurrence of haze in Malaysia—A case study in an urban industrial area. Pure and Applied Geophysics, 160, 221–238.

    Article  Google Scholar 

  45. Wang, Y., & Zhang, Y. S. (2009). Air quality assessment by contingent valuation in Ji’nan, China. Journal of Environmental Management, 90(2), 1022–1029.

    Article  CAS  Google Scholar 

  46. Wilks, D. (1995). Statistical methods in the atmospheric sciences—An introduction. New York: Academic.

    Google Scholar 

  47. Yaffee, R. A., & McGee, M. (2000). Introduction to time series analysis and forecasting with applications of SAS and SPSS. New York: Academic.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nor Azam Ramli.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sansuddin, N., Ramli, N.A., Yahaya, A.S. et al. Statistical analysis of PM10 concentrations at different locations in Malaysia. Environ Monit Assess 180, 573–588 (2011). https://doi.org/10.1007/s10661-010-1806-8

Download citation

Keywords

  • Gamma distribution
  • Log-normal distribution
  • PM10
  • Autoregressive (AR) model