Skip to main content

Advertisement

Log in

Land degradation assessment by geo-spatially modeling different soil erodibility equations in a semi-arid catchment

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Land degradation by soil erosion is one of the most serious problems and environmental issues in many ecosystems of arid and semi-arid regions. Especially, the disturbed areas have greater soil detachability and transportability capacity. Evaluation of land degradation in terms of soil erodibility, by using geostatistical modeling, is vital to protect and reclaim susceptible areas. Soil erodibility, described as the ability of soils to resist erosion, can be measured either directly under natural or simulated rainfall conditions, or indirectly estimated by empirical regression models. This study compares three empirical equations used to determine the soil erodibility factor of revised universal soil loss equation prediction technology based on their geospatial performances in the semi-arid catchment of the Saraykoy II Irrigation Dam located in Cankiri, Turkey. A total of 311 geo-referenced soil samples were collected with irregular intervals from the top soil layer (0–10 cm). Geostatistical analysis was performed with the point values of each equation to determine its spatial pattern. Results showed that equations that used soil organic matter in combination with the soil particle size better agreed with the variations in land use and topography of the catchment than the one using only the particle size distribution. It is recommended that the equations which dynamically integrate soil intrinsic properties with land use, topography, and its influences on the local microclimates, could be successfully used to geospatially determine sites highly susceptible to water erosion, and therefore, to select the agricultural and bio-engineering control measures needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anonymous (1988). Çankırı-E16 paftası 1/100000 ölçekli açınsama nitelikli Türkiye jeoloji haritaları serisi. Maden Teknik Arama Genel Müdürlüðü, Ankara (in Turkish).

  • Bartsch, K. P., Van Miegroet, H., Boettinger, J., & Dobrwolski, J. P. (2002). Using empirical erosion models and GIS to determine erosion risk at Camp Williams. Journal of Soil and Water Conservation, 57, 29–37.

    Google Scholar 

  • Basaran, M., Erpul, G., & Ozcan, A. U. (2008). Variation of macro-aggregate stability and organic matter fractions in the basin of Saraykoy II Irrigation Dam, Cankiri, Turkey. Fresenius Environmental Bulletin, 17, 224–239.

    CAS  Google Scholar 

  • Basaran, M., Erpul, G., Tercan, A. E., & Canga, M. (2007). The effects of land use changes on some soil properties in Indağı Mountain Pass—Çankırı, Turkey. Environmental Monitoring and Assessment, 136, 101–119.

    Article  Google Scholar 

  • Baskan, O., & Dengiz, O. (2008). Comparison of traditional and geostatistical methods to estimate soil erodibility factor. Arid Land Research and Management, 22(1), 29–45.

    Article  Google Scholar 

  • Bayramin, I., Basaran, M., Erpul, G., & Canga, M. R. (2008). Assessing the effects of land use changes on soil sensitivity to erosion in a highland ecosystem of semi-arid Turkey. Environmental Monitoring and Assessment, 140, 249–265.

    Article  Google Scholar 

  • Burgess, T. M., & Webster, R. (1980a). Optimal interpolation and isarithm mapping of soil properties: I. The semivariogram and punctual kriging. Journal of Soil Science, 31(3), 315–331.

    Article  Google Scholar 

  • Burgess, T. M., & Webster, R. (1980b). Optimal interpolation and isarithm mapping of soil properties: II. Block kriging. Journal of Soil Science, 31(3), 333–344.

    Article  Google Scholar 

  • Burke, E. J., Brown, S. J., & Christidis, N. (2006). Modeling the recent evolution of global drought and projections for the twenty-first century with the Hadley Centre climate model. Journal of Hydrometeorology, 7(5), 1113–1125.

    Article  Google Scholar 

  • Burrough, P. A. (1987). Principles of geographical information systems for land resources assessment (pp. 147–165). Oxford: Clarendon.

    Google Scholar 

  • Campbell, J. B. (1978). Spatial variation of sand content and pH within single contiguous delineations of two soil mapping units. Soil Science Society of American Journal, 42, 460–464.

    Article  Google Scholar 

  • Castrignano, A., Buttafuoco, G., Canu, A., Zucca, C., & Madrau, S. (2008). Modeling spatial uncertainty of soil erodibility factor using joint stochastic simulation. Land Degradation and Development, 19(2), 198–213.

    Article  Google Scholar 

  • Cerri, C. E. P., Dematte, J. A. M., Ballester, M. V. R., Martinelli, L. A., et al. (2001). GIS erosion risk assessment of the Piracicaba River Basin, southeastern Brazil. Mapping Sciences and Remote Sensing, 38, 157–171.

    Google Scholar 

  • Chien, Y. J., Lee, D. Y., Guo, H. Y., & Houng, K. H. (1997). Geostatistical analysis of soil properties of mid-west Taiwan Soils. Soil Science, 162(4), 291–297.

    Article  CAS  Google Scholar 

  • Dahlgren, A. R., Bottinger, L. T., Huntington, L. G., & Amundson, A. R. (1997). Soil development along an elevation transect in the western Sierra Nevada, California. Geoderma, 78, 207–236.

    Article  Google Scholar 

  • Di, H. J., Trangmar, B. B., & Kemp, R. A. (1989). Use of geostatistics in designing sampling strategies for soil survey. Soil Science Society of America Journal, 53(4), 1163–1167.

    Article  Google Scholar 

  • Dregne, H. E., & Chou, N. T. (1992). Global desertification dimensions and costs, in degradation and restoration of arid lands. Lubbock: Texas Tech University.

    Google Scholar 

  • Erdogan, E. H., Erpul, G., & Bayramin, I. (2007). Use of USLE/GIS methodology for predicting soil loss in a semi-arid agricultural watershed. Environmental Monitoring and Assessment, 131, 153–161.

    Article  Google Scholar 

  • Fu, B. J. W. W., Zhao, L. D., Chen, Q. J., Zhang, Y. H., Lu, H., Gulinck, H., et al. (2005). Assessment of soil erosion at large watershed scale using RUSLE and GIS: A case study in the Loess Plateau of China. Land Degradation and Development, 16(1), 73–85.

    Article  Google Scholar 

  • GDPS (General Directorate of Rural Service) (1986). 1/25000 soil map of Ankara, Turkey. Turkey: Digital Soil Database: Soil and Water Resources National Information Centre.

  • Goovaerts, P. (1999). Geostatistics in soil science: State-of-the-art and perspectives. Geoderma, 89(1), 1–45.

    Article  Google Scholar 

  • Held, I. M., Delworth, T. M., Lu, J., Findell, K. L., & Knutson, T. R. (2005). Simulation of Sahel Drought in the 20th and 21st centuries. Proceedings of the National Academy of Sciences, 102(50), 17891–17896.

    Article  CAS  Google Scholar 

  • Hillel, D. (1980). Applications of soil physic (p. 380). New York: Academic.

    Google Scholar 

  • Isaaks, E. H., & Srivastava, R. M. (1989). An introduction to applied geostatistics (p. 561). New York: Oxford University Press.

    Google Scholar 

  • Journel, A. G., & Huijbregts, C. S. (1978). Mining geostatistics (p. 600). New York: Academic.

    Google Scholar 

  • Kinnell, P. I. A. (2001). Slope length factor for applying the USLE-M to erosion in grid cells. Soil and Tillage Research, 58, 11–17.

    Article  Google Scholar 

  • Kitanidis, P. K. (1997). Introduction to geostatistics: Applications to hydrogeology (p. 274). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Klute, A., & Dirksen, C. (1986). Hydraulic conductivity and diffusivity: Laboratory methods. In A. Klute (Ed.), Methods of soil analysis, part 1: Physical and mineralogical methods (2nd ed., pp. 687–734). Madison: American Society of Agronomy.

    Google Scholar 

  • Lu, D. L. G., Valladares, G. S., & Batistella, M. (2004). Mapping soil erosion risk in Rondonia, Brazilian Amazonia: Using RUSLE, remote sensing and GIS. Land Degradation and Development, 15, 499–512.

    Article  Google Scholar 

  • Ma, J. W., Xue, Y., Ma, C. F., & Wang, Z. G. (2003). A data fusion approach for soil erosion monitoring in the Upper Yangtze River Basin of China based on universal soil loss equation (USLE) model. International Journal of Remote Sensing, 24, 4777–4789.

    Article  Google Scholar 

  • Martin, A., Gunter, J., & Regens, J. (2003). Estimating erosion in a riverine watershed, Bayou Liberty—Tchefuncta River in Louisiana. Environmental Science and Pollution Research, 10(4), 245–250.

    Article  Google Scholar 

  • Matheron, G. (1963). Principles of geostatistics. Economic Geology, 58(8), 1246–1266.

    Article  CAS  Google Scholar 

  • MEA (Millennium Ecosystem Assessment) (2005). Ecosystems and human well-being: Desertification synthesis. Washington: World Resource Institute.

    Google Scholar 

  • Millward, A. A., & Mersey, J. E. (1999). Adapting the RUSLE to model soil erosion potential in a mountainous tropical watershed. Catena, 38, 109–129.

    Article  Google Scholar 

  • Nelson, D. W., & Sommers, L. E. (1982). Total Carbon, organic carbon, and organic matter. In A. L. Page (Ed.), Methods of soil analysis. Part 2 (2nd ed., pp. 539–579). Madison: American Society of Agronomy.

    Google Scholar 

  • Oldeman, L. R. (1994). The global extent of land degradation. In D. J. Greenland & I. Szabolcs (Eds.), Land resilience and sustainable land use (pp. 99–118). Wallingford: CABI.

    Google Scholar 

  • Ouyang, D., & Bartholic, J. (2001). Web-based GIS application for soil erosion prediction. In Proceedings of an international symposium—soil erosion research for the 21st century (pp. 260–263). Honolulu, HI.

  • Ozcan, A. U., Erpul, G., Basaran, M., & Erdogan, H. E. (2008). Use of USLE/GIS technology integrated with geostatistics to assess soil erosion risk in different land uses of Indagi Mountain Pass—Cankırı, Turkey. Environmental Geology, 53(8), 1731–1741.

    Article  Google Scholar 

  • Parysow, P., Wang, G., Gerther, G., & Anderson, A. (2003). Spatial uncertainty analysis for mapping soil erodibility based on joint sequential simulation. Catena, 53, 65–78.

    Article  Google Scholar 

  • Perez-Rodriquez, R., Marques, M. J., & Bienes, R. (2007). Spatial variability of the soil erodibility parameters and their relation with the soil map at subgroup level. Science of the Total Environment, 378, 166–173.

    Article  Google Scholar 

  • Ravi, S., Breshears, D. D., Huxman, T. E., & D’Odoric, P. (2009). Land degradation in drylands: Interactions among hydrologic-aeolian erosion and vegetation dynamics. Geomorphology. doi:10.1016/j.geomorph.2009.11.023.

    Google Scholar 

  • Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D. K., & Yoder, D. C. (1997). Predicting soil erosion by water: A guide to conservation planning with the revised universal soil loss equation RUSLE (p. 404). U. S. Department of Agriculture, Agriculture Handbook 703, Government Printing Office, SSOP, Washington, D.C., ISBN 0-16-048938-5.

  • Romkens, M. J. M., Prasad, S. N., & Poesen, J. W. A. (1986). Soil erodibility and properties. In Proc. 13th congree. international soil science society (Vol. 5, pp. 492–504). Germany: Hamburg.

    Google Scholar 

  • Seager, R., Ting, M., Held, M. I., Kushnir, Y., Lu, J., Vecchi, G., et al. (2007). Model projections of an imminent transition to a more arid climate in southwestern North America. Science, 316, 1181–1184.

    Article  CAS  Google Scholar 

  • Shirazi, M. A., & Boersma, L. (1984). A unifying quantitative analysis of soil texture. Soil Science Society America of Journal, 48, 142–147.

    Article  Google Scholar 

  • Smith, R. L., & Smith, T. M. (2000). Elements of ecology (4th ed.). San Francisco: Addison Wesley Longman.

    Google Scholar 

  • Soil Survey Staff (1996). Soil survey laboratory methods manual (No. 42, Version 3.0). Soil Survey Investigations Reports. Lincoln: USDA-NRCS.

    Google Scholar 

  • Tang, Y. B. (2002). Comparison of semivariogram models for Kriging monthly rainfall in eastern China. Journal of Zhejiang University Science, 3(5), 584–590.

    Article  Google Scholar 

  • Torri, D., Poesen, J., & Borselli, L. (1997). Predictability and uncertainty of the soil erodibility factor using a global dataset. Catena, 31, 1–22.

    Article  Google Scholar 

  • Torri, D., Poesen, J., & Borselli, L. (2002). Corrigendum to “Predictability and uncertainty of the soil erodibility factor using a global dataset” [Catena 31 (1997) 1–22] and to “Erratum to Predictability and uncertainty of the soil erodibility factor using a global dataset. [Catena 32 (1998) 307–308]”. Catena, 46, 309–310.

    Article  Google Scholar 

  • Trangmar, B. B., Yost, R. S., & Uehara, G. (1985). Application of geostatistics to spatial studies of soil properties. Advances in Agronomy, 38, 45–94.

    Article  Google Scholar 

  • Tsui, C. C., Chen, Z. S., & Hsieh, C. F. (2004). Relationships between soil properties and slope positioning a low land rain forest of southern Taiwan. Geoderma, 123, 131–142.

    Article  Google Scholar 

  • UNCCD (1994). Elaboration of an international convention to combat desertification in countries experiencing serious drought and/ or desertification, particularly in Africa. U.N. Doc.A/AC.241/27, 33 I.L.M. 1328.

  • Ventura, S. J., Chrisman, N. R., Conncrs, K., Gurda, R. F., & Martin, R. W. (1988). A land information system for soil erosion control planning. Journal of Soil and Water Conservation, 43(3), 230–233.

    Google Scholar 

  • Wang, G., Gertner, G., Fang, S., & Anderson, A. B. (2003). Mapping multiple variables for predicting soil loss by geostatistical methods with TM images and a slope map. Photogrammetric Engineering and Remote Sensing, 69, 889–898.

    Google Scholar 

  • Wang, G., Gertner, G., Liu, X., & Anderson, A. (2001). Uncertainty assessment of soil erodibility factor for revised universal soil loss equation. Catena, 46, 1–14.

    Article  Google Scholar 

  • Wischmeier, W. H., & Smith, D. D. (1978). Predicting rainfall erosion losses (No. 537). USDA Agricultural Service Handbook. Washington, D.C.

  • Wischmeier, W. H., Johnson, C. B., & Cross, B. V. (1971). A soil erodibility nomograph for farmland and construction sites. Journal of Soil and Water Conservation, 26, 189–193.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunay Erpul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saygın, S.D., Basaran, M., Ozcan, A.U. et al. Land degradation assessment by geo-spatially modeling different soil erodibility equations in a semi-arid catchment. Environ Monit Assess 180, 201–215 (2011). https://doi.org/10.1007/s10661-010-1782-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-010-1782-z

Keywords

Navigation