Skip to main content
Log in

Effect of HPLC binary mobile phase composition on the analysis of carbonyls

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The relative performance of the binary mobile phase in the high-performance liquid chromatography analysis of carbonyl compounds (CCs) was tested using the liquid-phase standards containing 15 aldehyde/ketone–DNPH mixture. The Hichrome column was employed for the analysis of CCs at a flow rate of 1.5 mL min − 1. The binary mobile phases prepared using both acetonitrile/water (AW) and a possible alternative of methanol:water (MW) mixture were examined by their calibration results. The data derived from these two binary phases were then evaluated in terms of three key variables (i.e., resolution, relative sensitivity, and retention time). The relative water content (or the water to organic solvent ratio (W/A) or (W/M)) of the binary phase was found as the key variable for the performance. The results indicate that the optimal resolution of AW combination was attained consistently for most composition, while MW generally suffered from overpressure problem. The changes of water content in the AW mixture led to the changes of all three variables in the quantitative analysis of CCs. The obtained results confirm that the AW mixture should be the optimal elutant for the CC analysis, as other simple binary compositions like MW are limited in many respects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baez, A. P., Belmont, R., & Padilla, H. (1995). Measurements of formaldehyde and acetaldehyde in the atmosphere of Mexico city. Environmental Pollution, 89(2), 163–167.

    Article  CAS  Google Scholar 

  • Bakeas, E. B., Argyris, D. I., & Siskos, P. A. (2003). Carbonyl compounds in the urban environment of Athens, Greece. Chemosphere, 52, 805–813.

    Article  CAS  Google Scholar 

  • Büldt, A., & Karst, U. (1999). N-methyl-4-hydrazino-7-nitrobenzofurazan as a new reagent for air monitoring of aldehydes and ketones. Analytical Chemistry, 71, 1893–1898.

    Article  Google Scholar 

  • de Carvalho, A. B., Kato, M., Rezende, M. M., de Pereira, P. A. P., & de Andrade, J. B. (2008). Determination of carbonyl compounds in the atmosphere of charcoal plants by HPLC and UV detection. Journal of Separation Science, 31, 1686-1693.

    Article  Google Scholar 

  • Dolan, J. W. (2002). Peak tailing and resolution. LCGC Europe. LC Resources Inc., Walnut Creek.

    Google Scholar 

  • Feng, Y., Wen, S., Chen, Y., Wang, X., Lu, H., Bi, X., Sheng, G., & Fu, J. (2005). Ambient levels of carbonyl compounds and their sources in Guangzhou, China. Atmospheric Environment, 39, 1789–1800.

    Article  CAS  Google Scholar 

  • Fung, Y.-S., & Long, Y. (2001). Determination of carbonyl compounds in air by electrochromatography. Electrophoresis, 22, 2270-2277.

    Article  CAS  Google Scholar 

  • Grosjean, E., Grosjean, D., Fraser, M. P. , & Cass, G. R. (1996). Air quality model evaluation data for organics. 2. C1-C14 carbonyls in Los Angeles air. Environmental Science & Technology, 30, 2687–2703.

    Article  CAS  Google Scholar 

  • Herrington, J. S., Fan, Z. H., Lioy, P. J., Zhang, J. (2007). Low acetaldehyde collection efficiencies for 24-hour sampling with 2,4-dinitrophenylhydrazine (DNPH)-coated solid sorbents. Environmental Science & Technology, 41, 580–585.

    Article  CAS  Google Scholar 

  • Ho, K. F., Lee, S. C., Louie, P. K. K., & Zou, S. C. (2002). Seasonal variation of carbonyl compound concentrations in urban area of Hong Kong. Atmospheric Environment, 36, 1259–1265.

    Article  CAS  Google Scholar 

  • Ho, D., & Kim, K.-H. (2010) Evaluation of ternary mobile phases for the analysis of carbonyl compound derivatives using high-performance liquid chromatography. The Scientific World Journal. doi:10.1100/tsw.2010.231.

    Google Scholar 

  • Hounoune, B., LeBris, T., Allou, L., Marchand, C., & Le Calve, S. (2006). Formaldehyde measurements in libraries: Comparison between infrared diode laser spectroscopy and DNPH-derivatization method. Atmospheric Environment, 40, 5768–5775.

    Article  Google Scholar 

  • Jakober, C. A., Charles, M. J., Kleeman, M. J., & Green, P. G. (2006). LC-MS analysis of carbonyl compounds and their occurrence in diesel emissions. Analytical Chemistry, 78, 5086–5093.

    Article  CAS  Google Scholar 

  • Kim, K.-H., Hong, Y.-J., Pal, R., Jeon, E.-C., Koo, Y.-S., & Sunwoo, Y. (2008). Investigation of carbonyl compounds in air from various industrial emission sources. Chemosphere, 70, 807–820.

    Article  CAS  Google Scholar 

  • Koivusalmi, E., Haatainen, E., & Root, A. (1999). Quantitative RP-HPLC determination of some aldehydes and hydroxyaldehydes as their 2,4-dinitrophenylhydrazone derivatives. Analytical Chemistry, 71, 86–91.

    Article  CAS  Google Scholar 

  • Liu, L.-J. S., Dills, R. L., Paulsen, M., & Kalman, D. A. (2001). Evaluation of media and derivatization chemistry for six aldehydes in a passive sampler. Environmental Science & Technology, 35, 2301–2308.

    Article  CAS  Google Scholar 

  • Long, W. J., & Henderson, J. W. (2008). Rapid separation and identification of carbonyls compounds by HPLC. Aligent Technologies, Inc. 5989–7483EN.

  • McNeff, C. V., Yan, B., Stoll, D. R., & Henry, R. A. (2007). Practice and theory of high temperature liquid chromatography. Journal of Separation Science, 30, 1672-1685.

    Article  CAS  Google Scholar 

  • Moussa, S. G. , El-Fadel, M., Saliba, N. A. (2006). Seasonal, diurnal and nocturnal behaviors of lower carbonyl compounds in the urban environment of Beirut, Lebanon. Atmospheric Environment, 40, 2459–2468.

    Article  CAS  Google Scholar 

  • Mukund, R., Kelly, T. J., Gordon, S. M., Hays, M. J., & McClenny, W. A. (1995). Status of ambient measurement methods for hazardous air pollutants: An EPA-sponsored survey points out the need for continued methods development for the Clean Air Act. Environmental Science & Technology, 29(4), 183A-187A.

    Article  CAS  Google Scholar 

  • Ochs, S. M., Fasciotti, M., Barreto, R. P., de Figueiredo, N. G., Albuquerque, F. C., Massa, M. C. G. P., et al. (2010). Optimization and comparison of HPLC and RRLC conditions for the analysis of carbonyl-DNPH derivatives. Talanta, 81(1–2), 521–529.

    Article  CAS  Google Scholar 

  • Pal, R., Kim, K.-H., Hong, Y.-J., & Jeon, E. C. (2008). The pollution status of atmospheric carbonyls in a highly industrialized area. Journal of Hazardous Materials, 153(3), 1122–1135.

    Article  CAS  Google Scholar 

  • Pang, X., & Mu, Y. (2006). Seasonal and diurnal variations of carbonyl compounds in Beijing ambient air. Atmospheric Environment, 40, 6313–6320.

    Article  CAS  Google Scholar 

  • Pires, M., & Carvalho, L. R. F. (1998). An artifact in air carbonyls sampling using C18 DNPH-coated cartridge. Analytica Chimica Acta, 367, 223–231.

    Article  CAS  Google Scholar 

  • Possanzini, M., Palo, V. D., Petricca, M., Fratarcangeli, R., & Brocco, D. (1996). Measurements of lower carbonyls in Rome ambient air. Atmospheric Environment, 30(22), 3757–3764.

    Article  CAS  Google Scholar 

  • Possanzini, M., Palo, V. D., Brancaleoni, E., Frattoni, M., & Ciccioli, P. (2000). A train of carbon and DNPH-coated cartridges for the determination of carbonyls from C1 to C12 in air and emission samples. Atmospheric Environment, 34, 5311–5318.

    Article  CAS  Google Scholar 

  • Possanzini, M., Tagliacozzo, G., & Cecinato, A. (2007). Simultaneous determination of formic acid and lower carbonyls in air samples by DNPH derivatization. Journal of Separation Science, 30, 2460–2465.

    Article  CAS  Google Scholar 

  • Prieto-Blanco, M. C., Iglesias, M. P., López-Mahía, P., Lorenzo, S. M., & Rodríguez, D. P. (2010). Simultaneous determination of carbonyl compounds and polycyclic aromatic hydrocarbons in atmospheric particulate matter by liquid chromatography–diode array detection–?uorescence detection. Talanta, 80, 2083–2092.

    Article  CAS  Google Scholar 

  • Uchiyama, S., Matsushima, E., Aoyagi, S., & Ando, M. (2004). Simultaneous determination of C1- C4 carboxylic acids and aldehydes using 2,4-dinitrophenylhydrazine-impregnated silica gel and high-performance liquid chromatography. Analytical Chemistry, 76, 5849–5854.

    Article  CAS  Google Scholar 

  • Wang, B., Lee, S. C., & Ho, K. F. (2007). Characteristics of carbonyls: concentrations and source strengths for indoor and outdoor residential microenvironments in China. Atmospheric Environment, 41, 2851–2861.

    Article  CAS  Google Scholar 

  • Weng, M., Zhu, L., Yang, K., & Chen, S. (2009). Levels and health risks of carbonyl compounds in selected public places in Hangzhou, China. Journal of Hazardous Materials, 164, 700–706.

    Article  CAS  Google Scholar 

  • Zegota, H. (1999). High-performance liquid chromatography of methanol released from pectins after its oxidation to formaldehyde and condensation with 2,4-dinitrophenylhydrazine. Journal of Chromatography A, 863, 227–233.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki-Hyun Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ho, D.X., Kim, KH. Effect of HPLC binary mobile phase composition on the analysis of carbonyls. Environ Monit Assess 180, 163–176 (2011). https://doi.org/10.1007/s10661-010-1779-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-010-1779-7

Keywords

Navigation