Environmental Monitoring and Assessment

, Volume 179, Issue 1–4, pp 555–573 | Cite as

Total mercury loadings in sediment from gold mining and conservation areas in Guyana

  • Joniqua Howard
  • Maya A. Trotz
  • Ken Thomas
  • Erlande Omisca
  • Hong Ting Chiu
  • Trina Halfhide
  • Fenda Akiwumi
  • Ryan Michael
  • Amy L. Stuart


The Low Carbon Development Strategy proposed in June 2009 by the government of Guyana in response to the Reducing Emissions from Deforestation and Forest Degradation in Developing Countries program has triggered evaluation of forest-related activities, thereby acting as a catalyst for improvements in Guyana’s small- to medium-scale gold mining industry. This has also shed light on areas committed to conservation, something that has also been handled by Non Governmental Organizations. This paper compares water quality and mercury concentrations in sediment from four main areas in Guyana, two that are heavily mined for gold using mercury amalgamation methods (Arakaka and Mahdia) and two that are considered conservation areas (Iwokrama and Konashen). Fifty-three sediment and soil mercury loadings ranged from 29 to 1,200 ng/g and averaged 215 ± 187 ng/g for all sites with similar averages in conservation and mining areas. Sediment loadings are within the range seen in French Guiana and Suriname, but conservation area samples had higher loadings than the corresponding uncontaminated baselines. Type of ore and location in the mining process seemed to influence mercury loadings. Mercury sediment loadings were slightly positively correlated with pH (correlation coefficient = 0.2; p value < 0.001) whereas no significant correlations were found with dissolved oxygen or turbidity.


Mercury Guyana Sediment Gold Mining Tropical forest Guianas 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akagi, H., Malm, O., Branches, F. J. P., Kinjo, Y., Kashima, Y., Guimaraes, J. R. D., et al. (1995a). Human exposure to mercury due to gold mining in the Tapajos River Basin, Amazon, Brazil: Speciation of mercury in human hair, blood and urine. Water, Air, and Soil Pollution, 80, 85–94.CrossRefGoogle Scholar
  2. Akagi, H., Malm, O., Kinjo, Y., Harada, M., Branches, F. J. P., Pfeiffer, W. C., et al. (1995b). Ethylmercury pollution in the Amazon, Brazil. Science of the Total Environment, 175, 85–95.CrossRefGoogle Scholar
  3. Alonso, L. E., McCullough, J., Naskrecki, P., Alexander, E., & Wright, H. E. (2008). A rapid biological assessment of the Konashen Community Owned Conservation Area, Southern Guyana. RAP Bulletin of Biological Assessment 51. Arlington: Conservation International.Google Scholar
  4. Beliveau, A., Lucotte, M., Davidson, R., Lopes, L. O., & Paquet, S. (2009). Early Hg mobility in cultivated tropical soils one year after slash-and-burn of the primary forest, in the Brazilian Amazon. Science of the Total Environment, 407, 4480–4489.CrossRefGoogle Scholar
  5. Benoit, J., Gilmour, C., Heyes, A., Mason, R., & Miller, C. (2002). Geochemical and biological controls over methylmercury production and degradation in aquatic ecosystems. In Y. Cai, & O. C. Braids (Eds.), Biogeochemistry of environmentally important trace elements. Washington.Google Scholar
  6. Bera, S. (2005). WWF-IAST mercury impact assessment project Region 1. Field report expedition 1, 24th April–19th May. Submitted to WWF, June 2005.Google Scholar
  7. Charlet, L., Roman-Ross, G., Spadini, L., & Rumbach, G. (2003). Solid and aqueous mercury in remote river sediments (Litany River, French Guyana, South America). Journal of Physics IV France, 107, 281.CrossRefGoogle Scholar
  8. Chevrier, C., Sullivan, K., White, R. F., Comtois, C., Cordier, S., & Grandjean, P. (2009). Qualitative assessment of visuospatial errors in mercury-exposed Amazonian children. Neurotoxicology, 30(1), 37–46.CrossRefGoogle Scholar
  9. CIA (2009). The world factbook 2009. Washington: Central Intelligence Agency. https://www.cia.gov/library/publications/the-world-factbook/index.html. Accessed 21 September 2009.
  10. Colchester, M., La Rose, J., & James, K. (2002). Mining and Amerindians in Guyana. Final report of the APA/ NSI project on Exploring indigenous perspective on consultation and engagement within the mining sector in Latin America and the Caribbean. http://www.nsi-ins.ca/english/pdf/guyana/guyana_final_report.pdf.
  11. Cordier, S., Grasmick, C., Paquier-Passelaigue, M., Mandereau, L., Weber, J. P., & Jouan, M. (1998). Mercury exposure in French Guiana: Levels and determinants. Archives of Environmental Health, 53, 299–303.CrossRefGoogle Scholar
  12. da Silva, D. S., Lucotte, M., Paquet, S., & Davidson, R. (2009). Influence of ecological factors and of land use on mercury levels in fish in the Tapajos River basin, Amazon. Environmental Resources, 109(4), 432–446.CrossRefGoogle Scholar
  13. de Diego, A., Tseng, C. M., Dimov, N., Amouroux, D., & Donard, O. F. X. (2001). Adsorption of aqueous inorganic mercury and methylmercury on suspended kaolin: Influence of sodium chloride, fulvic acid and particle content. Applied Organometallic Chemistry, 15(6), 490–498.CrossRefGoogle Scholar
  14. De Kom, J., Van der Voet, G., & De Wolff, F. (1998). Mercury exposure of Maroon workers in the small scale gold mining in Suriname. Environmental Resources, 77(2), 91–97.Google Scholar
  15. Dorea, J. G. (2009). Comparing fish-mercury exposed Amazonian children: Should not we consider thimerosal-preserved vaccines? Neurotoxicology, 30(3), 485–486.CrossRefGoogle Scholar
  16. Drexel, R., Haitzer, M., Ryan, J., Aiken, G., & Nagy, K. (2002). Mercury(II) sorption to two Florida Everglades peats: Evidence for strong and weak binding and competition by dissolved organic matter released from the peat. Environmental Science & Technology, 36(19), 4058–4064.CrossRefGoogle Scholar
  17. EPA (1994). Mercury in sediments by manual cold vapor atomic absorption (CVAA). Method 7471.Google Scholar
  18. EPA (2009). National recommended water quality criteria. http://www.epa.gov/waterscience/criteria/wqctable/nrwqc-2009.pdf. Accessed 21 September 2009.
  19. Florida Department of Environmental Protection (2008). Digestion of sediment and waste samples for total mercury analysis. ftp://ftp.dep.state.fl.us/pub/labs/lds/sops/4175.pdf. Accessed 12 January 2008.
  20. Florida Department of Environmental Protection (2009). Analysis of total mercury in sediments and wastes by cold vapor atomic absorption (CVAA) spectroscopy. ftp://ftp.dep.state.fl.us/pub/labs/lds/sops/4449.pdf.
  21. Fong-Sam, Y. (2009). The mineral industries of French Guiana, Guyana, and Suriname. In U.S. geological survey minerals yearbok-2006. http://minerals.usgs.gov/minerals/pubs/country/2006/myb3–2006-gf-gy-ns.pdf. Accessed 21 September 2009.
  22. Fostier, A., Forti, M., Guimaraes, J., Melfi, A., Boulet, R., Espirito Santo, C., et al. (2000). Mercury fluxes in a natural forested Amazonian catchment (Serra do Navio, Amapá State, Brazil). Science of the Total Environment, 260(1–3), 201–211.CrossRefGoogle Scholar
  23. Frery, N., Maury-Brachet, R., Maillot, E., Deheeger, M., de Merona, B., & Boudouet, A. (2001). Gold-mining activities and mercury contamination of native Amerindian communities in French Guiana: Key role of fish in dietary uptake. Environmental Health Perspectives, 109(5), 449–456.CrossRefGoogle Scholar
  24. Funk, V., Zermoglio, M., & Nasir, N. (1999). Testing the use of specimen collection data and GIS in biodiversity exploration and conservation decision making in Guyana. Biodiversity Conservation, 8(6), 727–751.CrossRefGoogle Scholar
  25. Gray, J., Labson, V., Weaver, J., & Krabbenhoft, D. (2002). Mercury and methylmercury contamination related to artisanal gold mining, Suriname. Geophysical Research Letters, 29(23), 2105.CrossRefGoogle Scholar
  26. Grimaldi, C., Grimaldi, M., & Guedron, S. (2008). Mercury distribution in tropical soil profiles related to origin of mercury and soil processes. Science of the Total Environment, 401(1–3), 121–129.CrossRefGoogle Scholar
  27. GGMC (Guyana Geology and Mines Commission) (2009). Guyana mineral production declared 1979–2008. http://www.ggmc.gov.gy/PDFs/Mineral%20Production.pdf. Accessed 18 September 2009.
  28. Hammond, D. (2005). Forest conservation and management in tropical forests of the Guiana Shield. In D. S. Hammond (Ed.), Tropical forests of the Guiana shield: Ancient forests in a modern world (pp. 481–491). Cambridge: CABI.CrossRefGoogle Scholar
  29. Hammond, D., Gond, V., de Thoisy, B., Forget, P., & DeDijn, B. (2007). Causes and consequences of a tropical forest gold rush in the Guiana Shield, South America. Ambio, 36(8), 661–670.CrossRefGoogle Scholar
  30. Hilson, G. (2006). Abatement of mercury pollution in the small-scale gold mining industry: Restructuring the policy and research agendas. Science of the Total Environment, 362(1–3), 1–14.CrossRefGoogle Scholar
  31. Hilson, G., & Vieira, R. (2007). Challenges with minimising mercury pollution in the small-scale gold mining sector: Experiences from the Guianas. International Journal of Environmental Health Research, 17(6), 429–441.CrossRefGoogle Scholar
  32. Hilson, G., Hilson, C., & Pardie, S. (2007). Improving awareness of mercury pollution in small-scale gold mining communities: Challenges and ways forward in rural Ghana. Environmental Research, 103(2), 275–287.CrossRefGoogle Scholar
  33. IAST (2006). WWF-IAST mercury impact assessment project Region 1. Field report expedition 2.Google Scholar
  34. Kim, C., Rytuba, J. J., Brown, J. G. E. (2004). EXAFS study of mercury (II) sorption to Fe- and Al-(hydr)oxides I. Effect of pH. Journal of Colloid and Interface Science, 271, 1–15.CrossRefGoogle Scholar
  35. Lacerda, L. D., Pfeiffer, W. C., Marins, R., Rodrigues, A., Souza, C., & Bastos, W. (1991). Mercury dispersal in water, sediments and aquatic biota of a gold mining tailing deposit drainage in Pocone, Brazil. Water, Air, and Soil Pollution, 55(3–4), 283–294.Google Scholar
  36. Lechler, P. J., Miller, J. R., Lacerda, L. D., Vinsond, D., Bonzongo, J. C., Lyons, W. B., et al. (2000). Elevated mercury concentrations in soils, sediments, water, and fish of the Madeira River basin, Brazilian Amazon: A function of natural enrichments? Science of the Total Environment, 260(13), 87–96.CrossRefGoogle Scholar
  37. Lim, K., & Engstrom, M. (2005). Mammals of Iwokrama forest. Proceedings of the National Academy of Sciences of Philadelphia, 154, 71–108.CrossRefGoogle Scholar
  38. Mac Naughton, M., & James, R. (1974). Adsorption of aqueous mercury (II) complexes at the oxide/water interface. Journal of Colloid and Interface Science, 47(2), 431–440.CrossRefGoogle Scholar
  39. Miller, J. R., Lechler, P. J., & Bridge, G. (2003). Mercury contamination of alluvial sediments within the Essequibo and Mazaruni River basins, Guyana. Water, Air, and Soil Pollution, 148(1–4), 139–166.CrossRefGoogle Scholar
  40. Mol, J., Ramlal, J., Lietar, C., & Verlooc, M. (2001). Mercury contamination in freshwater, estuarine, and marine fishes in relation to small-scale gold mining in Suriname. South America, 86(2), 183–197.Google Scholar
  41. Nriagu, J. O., Pfeiffer, W., Malm, O., Magalhaes de Souza, C., & Mierle, G. (1992). Mercury pollution in Brazil. Nature, 356, 389–389.CrossRefGoogle Scholar
  42. Office of the President Republic of Guyana (2009). A low-carbon development strategy. Transforming Guyana’s economy while combating climate change draft for consultation. http://www.lcds.gov.gy/images/stories/Documents/LCDS.pdf. Accessed 25 September 2009.
  43. Paktunc, D., Smith, D., & Couture, R. (2004). Mineralogical and geochemical characterization of sediments and suspended particulate matter in water from the Potaro River Area, Guyana: Implications for mercury sources. In M. Pecchio, F. R. D. Andrade, L. Z. D’agostino, H. Kahn, L. M. Sant’agostino, & M. L. Tassinari (Eds.), Applied Mineralogy (pp. 379–382). Sao Paolo: ICAM-BR.Google Scholar
  44. Pataranawat, P., Parkpian, P., Polprasert, C., Delaune, R., & Jugsujinda, A. (2007). Mercury emission and distribution: Potential environmental risks at a small-scale gold mining operation, Phichit Province, Thailand. Journal of Environmental Science and Health. Part A, Toxic/Hazard Substances & Environmental Engineering, 42(8), 1081–1093.CrossRefGoogle Scholar
  45. Paterson, G. D., & Heemskerk, M. (2001). Deforestation and forest regeneration following small-scale gold mining in the Amazon: The case of Suriname. Environmental Conservation, 2, 117–126.Google Scholar
  46. Richard, S., Arnoux, A., Cerdan, P., Reynouard, C., & Horeau, V. (2000). Mercury levels of soils, sediments and fish in French Guiana, South America. Water, Air, and Soil Pollution, 124(3–4), 221–244.CrossRefGoogle Scholar
  47. Roulet, M., Lucotte, M., Canuel, R., Rheault, I., Tran, S., De Freitos Gog, Y., et al. (1998a). Distribution and partition of total mercury in waters of the Tapajós River Basin, Brazilian Amazon. Science of the Total Environment, 213(1–3), 203–211.CrossRefGoogle Scholar
  48. Roulet, M., Lucotte, M., Saint Aubin, A., Tran, S., Rheault, I., Farella, N., et al. (1998b). The geochemistry of mercury in central Amazonian soils developed on the Alter-do-Chão formation of the lower Tapajós River Valley, Pará state, Brazil. Science of the Total Environment, 223(1), 1–24.CrossRefGoogle Scholar
  49. Sarkar, D., Essington, M., & Misra, K. (2000). Adsorption of mercury(II) by kaolinite. Soil Science Society of America Journal, 64(6), 1968–1975.CrossRefGoogle Scholar
  50. Sarkar, D., Essington, M., & Misra, K. (1999). Adsorption of mercury(II) by variable charge surfaces of quartz and gibbsite. Soil Science Society of America Journal, 63(6), 1626–1636.CrossRefGoogle Scholar
  51. Scudder, B. C. C., Lia, C., Wentz, D. A., Bauch, N. J., Brigham, M. E., Moran, P. W., et al. (2009). Mercury in fish, bed sediment, and water from streams across the United States, 1998–2005. USGS Scientific investigations report 2009–5109, USGS: 2.Google Scholar
  52. Singh, D., Watson, C., & Mangal, S. (1999). Identification of the sources and assessment of the levels of mercury contamination in the Mazaruni basin in Guyana, in order to recommend mitigation measures. Technical summary submitted to WWF-Guianas.Google Scholar
  53. Spadini, L., & Charlet, L (2003). Distribution of anthropogenic mercury in French Guyana river sediments downstream from gold mining sites. Journal de Physique. IV, Colloque: JP, 107, 1263–1266.CrossRefGoogle Scholar
  54. Stabroek News (2009). GGMC: Mercury mining to be phased out. http://www.stabroeknews.com/2009/stories/09/21/ggmc-mercury-mining-to-be-phased-out/. Accessed 21 September 2009.
  55. Swain, E., Jakus, P., Rice, G., Lupi, F., Maxson, P., Pacyna, J., et al. (2007). Socioeconomic consequences of mercury use and pollution. Ambio, 36(1), 45–61.CrossRefGoogle Scholar
  56. Thanabalasingam, P., & Pickering, W (1986). Sorption of mercury(ii) by manganese(iv) oxide. Environmental Pollution Series B (United Kingdom), 10(2), 115–128.CrossRefGoogle Scholar
  57. Transparency International (2009). http://chapterzone.transparency.org/news_room/in_focus/2008/cpi2008/cpi_2008_table. Accessed 19 September 2009.
  58. Trotz, M. (2008). Water quality at selected sites in the Konashen COCA, Southern Guyana. In L. E. Alonso, J. McCullough, J. P. Naskrecki, E. Alexander, & H. E. Wright (Eds.), A rapid biological assessment of the Konashen Community Owned Conservation Area, Southern Guyana. RAP Bulletin of Biological Assessment 51 (pp. 35–42). Arlington: Conservation International.Google Scholar
  59. UNEP (2000). Global mercury assessment. Chapter 7: Current production and use of mercury. http://www.chem.unep.ch/mercury/report/Final%20report/chapter7.pdf. Accessed 13 August 2010.
  60. US Department of Health and Human Services (1999). Toxicological profile for mercury. Public Health Service Agency for Toxic Substances and Disease Registry.Google Scholar
  61. USGS (2008). 2006 minerals yearbook: Latin America and Canada. United States Geological Survey. http://minerals.usgs.gov/minerals/pubs/country/2006/myb3-sum-2006-latin-canada.pdf. Accessed 16 September 2009.
  62. Vari, R. P., & Ferraris, C. J. (2009). Fishes of the Guiana Shield. Bulletin of the Biological Society of Washington, 17, 9–18.Google Scholar
  63. Vieira, R. (2006). Mercury-free gold mining technologies: Possibilities for adoption in the Guianas. Journal of Cleaner Production, 14(3–4), 448–454.CrossRefGoogle Scholar
  64. Wasserman, J., Hacon, S., & Wasserman, M. (2003). Biogeochemistry of mercury in the Amazonian environment. Ambio, 32(5), 336–342.Google Scholar
  65. Watkins, G., Saul, W., Holm, E., Watson, C., Arjoon, D., & Bicknell, J. (2005). The fish fauna of the Iwokrama Forest. Proceedings of the National Academy of Sciences of Philadelphia, 154, 39–53.CrossRefGoogle Scholar
  66. WHO (1990). Environmental health criteria 101 methylmercury. Geneva: World Health Organization. http://www.inchem.org/documents/ehc/ehc/ehc101.htm. Accessed 21 September 2009.
  67. WHO (2000). Air quality guidelines for Europe. Copenhagen: World Health Organization Regional Office for Europe.Google Scholar
  68. WHO (2004). Guidelines for drinking-water quality (3rd ed.). Geneva: World Health Organization. http://www.who.int/water_sanitation_health/dwq/GDWQ2004web.pdf. Accessed 21 September 2009.
  69. WWF Guianas (2008). WWF Guianas highlights 2008: Sustainable natural resources management project 2007–2011. http://assets.panda.org/downloads/wwf_highlights_2007.pdf. Accessed 13 August 2010.

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Joniqua Howard
    • 1
  • Maya A. Trotz
    • 1
  • Ken Thomas
    • 1
  • Erlande Omisca
    • 1
  • Hong Ting Chiu
    • 1
  • Trina Halfhide
    • 2
  • Fenda Akiwumi
    • 2
  • Ryan Michael
    • 3
  • Amy L. Stuart
    • 3
  1. 1.Department of Civil and Environmental EngineeringUniversity of South FloridaTampaUSA
  2. 2.Department of Geography, College of Arts and ScienceUniversity of South FloridaTampaUSA
  3. 3.Department of Environmental and Occupational Health, College of Public HealthUniversity of South FloridaTampaUSA

Personalised recommendations