Skip to main content

Advertisement

Log in

Aerosol size distributions in urban Jinan: Seasonal characteristics and variations between weekdays and weekends in a heavily polluted atmosphere

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Aerosol size distributions, trace gas, and PM2.5 concentrations have been measured in urban Jinan, China, over 6 months in 2007 and 2008, covering spring, summer, fall, and winter time periods. Number concentrations of particles (10–2,500 nm) were 16,200, 13,900, 11,200, and 21,600 cm − 3 in spring, summer, fall, and winter, respectively. Compared with other urban studies, Jinan has higher number concentrations of accumulation-mode particles (100–500 nm) and particles (10–2,500 nm), but lower concentrations of ultrafine particles (10–100 nm). The number, surface and volume concentrations, and size distributions of particles showed obvious seasonal variation and are also influenced by traffic emissions. Through correlation analysis, traffic emissions are proposed to be a more important contributor to Atkien-mode and accumulation-mode particles than coal firing. Around midday, the presence of nanoparticles and new particle formation is limited to pre-existing particles from traffic emissions and the mass transport of particles from suburban and rural areas. Compared with other studies in urban areas of Europe and the USA, the variation of particle number concentration and related gas concentration in Jinan between weekdays and weekends is smaller and the reasons has been deduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bellouin, N., Boucher, O., Haywood, J., & Reddy, M. S. (2005). Global estimate of aerosol direct radiative forcing from satellite measurements. Nature, 438, 1138–1141.

    Article  CAS  Google Scholar 

  • Burtscher, H. (2005). Physical characterization of particulate emissions from diesel engines: A review. Journal of Aerosol Science, 36(7), 896–932.

    Article  CAS  Google Scholar 

  • Chung, C. E., Ramanathan, V., Kim, D., & Podgorny, I. A. (2005). Global anthropogenic aerosol forcing derived from satellite and ground-based observations. Journal of Geophysical Research-Atmospheres, 110, D24207. doi:10.1029/2005JD006356.

    Article  Google Scholar 

  • Costabile, F., Birmili, W., Klose, S., Tuch, T., Wehner, B., Wiedensohler, A., et al. (2009). Spatio-temporal variability and principal components of the particle number size distribution in an urban atmosphere. Atmospheric Chemistry and Physics, 9(9), 3163–3195.

    Article  CAS  Google Scholar 

  • Crutzen, P. J., & Andreae, M. O. (1990). Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles. Science, 250(4988), 1669–1678.

    Article  CAS  Google Scholar 

  • Dockery, D. W., & Pope, C. A. (1994). Acute respiratory effects of particulate air pollution. Annual Review of Public Health, 15, 107–132.

    Article  CAS  Google Scholar 

  • Engler, C., Lihavainen, H., Komppula, M., Kerminen, V. M., Kulmala, M., & Viisanen, Y. (2007). Continuous measurements of aerosol properties at the Baltic Sea. Tellus Series B-Chemical and Physical Meteorology, 59(4), 728–741.

    Article  Google Scholar 

  • Gao, J., Wang, T., Zhou, X., Wu, W., & Wang, W. (2008). Measurement of aerosol number size distributions in the Yangtze River delta in China: Formation and growth of particles under polluted conditions. Atmospheric Environment, 43(4), 829–836.

    Article  Google Scholar 

  • Harris, S. J., & Maricq, M. M. (2001). Signature size distributions for diesel and gasoline engine exhaust particulate matter. Journal of Aerosol Science, 32(6), 749–764.

    Article  CAS  Google Scholar 

  • Holmes, N. S. (2007). A review of particle formation events and growth in the atmosphere in the various environments and discussion of mechanistic implications. Atmospheric Environment, 41(10), 2183–2201.

    Article  CAS  Google Scholar 

  • Hussein, T., Puustinen, A., Aalto, P. P., Makela, J. M., Hameri, K., & Kulmala, M. (2004). Urban aerosol number size distributions. Atmospheric Chemistry and Physics, 4, 391–411.

    Article  CAS  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2001). Climate change 2001: The scientific basis. In J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, et al. (Eds.), Contribution of working group I to the third assessment report of the intergovern-mental panel on climate change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Kittelson, D. B., Watts, W. F., & Johnson, J. P. (2004). Nanoparticle emissions on Minnesota highways. Atmospheric Environment, 38(1), 9–19.

    Article  CAS  Google Scholar 

  • Kulmala, M., Maso, M., & Makela, J. M. (2001). On the formation, growth and composition of nucleation mode particles. Tellus Series B-Chemical and Physical Meteorology, 53(4), 479–490.

    Article  Google Scholar 

  • Kulmala, M., Petäjä, T., Mönkkönen, P., Koponen, I. K., Dal Maso, M., Aalto, P. P., et al. (2004a). On the growth of nucleation mode particles: Source rates of condensable vapor in polluted and clean environments. Atmospheric Chemistry and Physics, 4(5), 409–416.

    Google Scholar 

  • Kulmala, M., Vehkamäki, H., Petäjä, T., Dal Maso, M., Lauri, A., Kerminen, V. M., et al. (2004b). Formation and growth rates of ultrafine atmospheric particles: A review of observations. Journal of Aerosol Science, 35(2), 143–176.

    Article  CAS  Google Scholar 

  • Laakso, L., Hussein, T., Aarnio, P., Komppula, M., Hiltunen, V., Viisanen, Y., et al. (2003). Diurnal and annual characteristics of particle mass and number concentrations in urban, rural and Arctic environments in Finland. Atmospheric Environment, 37(19), 2629–2641.

    CAS  Google Scholar 

  • Menon, S., Del Genio, A. D., Koch, D., & Tselioudis, G. (2002). GCM simulations of the aerosol indirect effect: Sensitivity to cloud parameterization and aerosol burden. Journal of the Atmospheric Sciences, 59(3), 692–713.

    Article  Google Scholar 

  • Morawska, L., Bofinger, N. D., Kocis, L., & Nwankwoala, A. (1998). Submicrometer and supermicrometer particles from diesel vehicle emissions. Environmental Science & Technology, 32(14), 2033–2042.

    Article  CAS  Google Scholar 

  • Morawska, L., Jayaratne, E. R., Mengersen, K., Jamriska, M., & Thomas, S. (2002). Differences in airborne particle and gaseous concentrations in urban air between weekdays and weekends. Atmospheric Environment, 36(27), 4375–4383.

    Article  CAS  Google Scholar 

  • Nemmar, A., Hoet, P. H., Dinsdale, D., Vermylen, J., Hoylaerts, M. F., & Nemery, B. (2003). Diesel exhaust particles in lung acutely enhance experimental peripheral thrombosis. Circulation, 107(8), 1202–1208.

    Article  Google Scholar 

  • Oberdörster, G. (2000). Toxicology of ultrafine particles: In vivo studies. Philosophical Transactions of the Royal Society of London Series A—Mathematical Physical and Engineering Sciences, 358(1775), 2719–2740.

    Article  Google Scholar 

  • Pekkanen, J., Timonen, K. L., Ruuskanen, J., Reponenc, A., Mirme, A., et al. (1997). Effects of ultrafine and fine particles in urban air on peak expiratory flow among children with asthmatic symptoms. Environmental Research, 74(1), 24–33.

    Article  CAS  Google Scholar 

  • Ruuskanen, J., Tuch, T., Ten Brink, H., Peters, A., Khlystov, A., Mirme, A., et al. (2001). Concentrations of ultrafine, fine and PM2.5 particles in three European cities. Atmospheric Environment, 35(21), 3729–3738.

    Article  CAS  Google Scholar 

  • Scholes, R. J., Ward, D. E., & Justice, C. O. (1996). Emissions of trace gases and aerosol particles due to vegetation burning in southern hemisphere Africa. Journal of Geophysical Research-Atmospheres, 101(D19), 23677–23682.

    Article  CAS  Google Scholar 

  • Seinfeld, J. H., & Pandis, S. N. (1998). Atmospheric chemistry and physics: From air pollution to climate change. New York: Wiley.

    Google Scholar 

  • Shi, Z. B., He, K. B., Yu, X. C., Yao, Z. L., Yang, F. M., Ma, Y. L., et al. (2007). Diurnal variation of number concentration and size distribution of ultrafine particles in the urban atmosphere of Beijing in winter. Journal of Environmental Sciences-China, 19(8), 933–938.

    Article  CAS  Google Scholar 

  • Stanier, C. O., Khlystov, A. Y., & Pandis, S. N. (2004a). Ambient aerosol size distributions and number concentrations measured during the Pittsburgh Air Quality Study (PAQS). Atmospheric Environment, 38(20), 3275–3284.

    Article  CAS  Google Scholar 

  • Stanier, C. O., Khlystov, A. Y., & Pandis, S. N. (2004b). Nucleation events during the Pittsburgh Air Quality Study: Description and relation to key meteorological, gas phase, and aerosol parameters. Aerosol Science and Technology, 38(12), 253–264.

    Article  CAS  Google Scholar 

  • Stott, P. A., Tett, S. F. B., Jones, G. S., Allen, M. R., Mitchell, J. F. B., & Jenkins, G. J. (2000). External control of 20th century temperature by natural and anthropogenic forcings. Science, 290, 2133–2137.

    Article  CAS  Google Scholar 

  • Venkataraman, C., & Rao, G. U. M. (2001). Emission factors of carbon monoxide and size-resolved aerosols from biofuel combustion. Environmental Science & Technology, 35(10), 2100–2107.

    Article  CAS  Google Scholar 

  • Voigtlander, J., Tuch, T., Birmili, W., & Wiedensohler, A. (2006). Correlation between traffic density and particle size distribution in a street canyon and the dependence on wind direction. Atmospheric Chemistry and Physics, 6, 4275–4286.

    Article  Google Scholar 

  • Wehner, B., Birmili, W., Gnauk, T., & Wiedensohler, A. (2002). Particle number size distributions in a street canyon and their transformation into the urban-air background: Measurements and a simple model study. Atmospheric Environment, 36(13), 2215–2223.

    Article  CAS  Google Scholar 

  • WHO (2005). World health organization air quality guidelines. Global Update, E87950.

  • Woo, K. S., Chen, D. R., Pui, D. Y. H., & McMurry, P. H. (2001). Measurement of Atlanta aerosol size distributions: Observations of ultrafine particle events. Aerosol Science and Technology, 34(1), 75–87.

    CAS  Google Scholar 

  • Wu, Z. J., Hu, M., Liu, S., Wehner, B., Bauer, S., Andreas, M. B., et al. (2007). New particle formation in Beijing, China: Statistical analysis of a 1-year data set. Journal of Geophysical Research-Atmospheres, 112(D9), D09209.

    Article  Google Scholar 

  • Yang, L. X., Wang, D. C., Cheng, S. H., Wang, Z., Zhou, Y., Zhou, X. H., et al. (2007). Influence of meteorological conditions and particulate matter on visual range impairment in Jinan, China. Science of the Total Environment, 383, 164–173.

    Article  CAS  Google Scholar 

  • Yue, D. L., Hu, M., Wu, Z. J., Wang, Z. B., Guo, S., Wehner, B., et al. (2009). Characteristics of aerosol size distributions and new particle formation in the summer in Beijing. Journal of Geophysical Research-Atmospheres, 114, D00G12, doi:10.1029/2008JD010894.

    Article  Google Scholar 

  • Zhang, Q., Stanier, C. O., Canagaratna, M. R., Pandis, S. N., & Jimenez, J. L. (2004). Insights into the chemistry of new particle formation and growth events in Pittsburgh based on aerosol mass spectrometry. Environmental Science & Technology, 38(18), 4797–4809.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenxing Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, P., Wang, W., Yang, L. et al. Aerosol size distributions in urban Jinan: Seasonal characteristics and variations between weekdays and weekends in a heavily polluted atmosphere. Environ Monit Assess 179, 443–456 (2011). https://doi.org/10.1007/s10661-010-1747-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-010-1747-2

Keywords

Navigation