Skip to main content
Log in

Assessment of enrichment factors and grain size influence on the metal distribution in riverbed sediments (Anllóns River, NW Spain)

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The metals distribution in the bed sediments of the Anllóns River was studied, with special emphasis on the evaluation of the metal distribution as a function of the granulometric fraction chosen for the analysis. Statistical significant differences between the distribution of K, Ca, Cr, Mn, As, Rb, Sr and Nb in the bulk (<2 mm) and fine fraction (<63 μm) were not found. Fe, Ni, Cu, Ga, Zr, Zn and Pb commonly appear in higher concentrations in the fine fraction, whereas Ti appears in higher concentrations in the bulk fraction. In general, it was observed that contamination phenomena tend to equalise the concentrations of both fractions, and this was mainly explained as the result of two processes. First, the formation of coatings over sands and, second, the formation of large aggregates (pseudo-sands) at sites located over basic rocks, whose chemical behaviour is closer to that of clays and could be responsible for significant adsorption processes. Normalisation techniques to evaluate contamination were applied by testing Nb, Sr, Rb or Ga as normaliser elements and by using crustal or shale average values for background concentrations. The most satisfactory result was obtained when using shale average values and Ga as the normaliser element. Arsenic was identified as the main contaminant of the basin, exceeding in all cases the low-effect reference values proposed by sediment quality guidelines and in two cases the medium-effect reference values. These sites were identified by multivariate techniques, which allow differentiating site 10 as affected by anthropogenic inputs related to past mining activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrahim, G. M. S., & Parker, R. J. (2008). Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environmental Monitoring and Assessment, 136(1–3), 227–238. doi:10.1007/s10661-007-9678-2.

    CAS  Google Scholar 

  • Abu-Rukah, Y., & Ghrefat, H. A. (2001). Assessment of the anthropogenic influx of metallic pollutants in Yarmouk River, Jordan. Environmental Geology, 40(6), 683–692.

    Article  CAS  Google Scholar 

  • Aloupi, M., & Angelidis, M. (2002). The significance of coarse sediments in metal pollution studies in the coastal zone. Water Air Soil and Pollution, 133, 121–131.

    Article  CAS  Google Scholar 

  • Al-Sewailem, M., Khaled, E., & Mashhady, A. (1999). Retention of copper by desert sands coated with ferric hydroxides. Geoderma, 89, 249–258.

    Article  CAS  Google Scholar 

  • Araújo, M., Jouanneau, J., Valério, P., Barbosa, T., Gouveia, A., Weber, O., et al. (2002). Geochemical tracers of northern Portuguese estuarine sediments on the shelf. Progress in Oceanography, 52, 277–297.

    Article  Google Scholar 

  • Audry, S., Schäfer, J., Blanc, G., & Jouanneau, J. (2004). Fifty-year sedimentary record of heavy metal pollution (Cd, Zn, Cu, Pb) in the Lot River reservoirs (France). Environmental Pollution, 132, 413–426.

    Article  CAS  Google Scholar 

  • Bauer, M., & Blodau, C. (2006). Mobilization of arsenic by dissolved organic matter from iron oxides, soils and sediments. The Science of the Total Environment, 354, 179–190.

    Article  CAS  Google Scholar 

  • Chen, B., Hulston, J., & Beckett, R. (2000). The effect of surface coatings on the association of orthophosphate with natural colloids. The Science of the Total Environment, 263, 23–35.

    Article  CAS  Google Scholar 

  • Cobelo-García, A., & Prego, R. (2004). Behaviour of dissolved Cd, Cu, Pb and Zn in the estuarine zone of the Ferrol Ria (Galicia, NW Iberian Peninsula). Fresenius Environmental Bulletin, 13(8), 753–759.

    Google Scholar 

  • Cobelo-García, A., Prego, R., & DeCastro, M. (2005). Metal distributions and their fluxes at the coastal boundary of a semi-enclosed ria. Marine Chemistry, 97(3–4), 277–292.

    Article  Google Scholar 

  • Devesa-Rey, R., Moldes, A. B., Díaz-Fierros, F., & Barral, M. T. (2009). Study of phytopigments in river bed sediments: Effects of the organic matter, nutrients and metal composition. Environmental Monitoring and Assessment, 153, 147–159.

    Article  CAS  Google Scholar 

  • Devesa-Rey, R., Paradelo, R., Díaz-Fierros, F., & Barral, M. T. (2008). Fractionation and bioavailability of Arsenic in the bed sediments of the Anllóns River (NW Spain). Water Air and Soil Pollution, 195, 189–199.

    Article  CAS  Google Scholar 

  • Doing, L., & Liber, K. (2005). Influence of dissolved organic matter on nickel bioavailability and toxicity to Hyalella azteca in water-only exposures. Aquatic Toxicology, 76(3–4), 203–216.

    Google Scholar 

  • Ewais, T., Grant, A., & Abdel Fattah, A. (2000). The role of surface coatings on sediments in sediments: Water partitioning of trace elements and radionuclides. Journal of Environmental Radioactivity, 49, 5–64.

    Article  Google Scholar 

  • Filgueiras, A. V., Lavilla, I., & Bendicho, C. (2004). Evaluation of distribution, mobility and binding behaviour of heavy metals in surficial sediments of Louro River (Galicia, Spain) using chemometric analysis: A case study. The Science of the Total Environment, 330(1–3), 115–129.

    CAS  Google Scholar 

  • Förstner, U., & Wittmann, G. (1983). Metal pollution in the aquatic environment. New York: Springer.

    Google Scholar 

  • García-Rodeja, E. (1983). Componentes no cristalinos en suelos de Galicia. Distribución, naturaleza y propiedades (Non crystalline components of Galician soils. Distribution, nature and properties). Ph.D. Santiago de Compostela University.

  • Garver, J. I., Royce, P. R., & Smick, T. A. (1996). Chromium and nickel in shale of the taconic foreland: A case study for the provenance of fine-grained sediments with an ultramafic source. Journal of Sedimentary Research, 66(1), 100–106.

    CAS  Google Scholar 

  • Glasby, G., Szefer, P., Geldon, J., & Warzocha, J. (2004). Heavy-metal pollution of sediments from Szczecin Lagoon and the Gdansk Basin, Poland. The Science of the Total Environment, 330, 249–269.

    Article  CAS  Google Scholar 

  • Golterman, H. (2004). Chemistry of phosphate and nitrogen compounds in sediments. Dordrecht: Kluwer.

    Google Scholar 

  • González, J., Bauluz, B., Fernández-Nieto, C., & Yuste, A. (2005). Factors controlling the trace-element distribution in fine-grained rocks: The Albian kaolinite-rich deposits of the Oliete Basin (NE Spain). Chemical Geology, 214, 1–19.

    Article  Google Scholar 

  • Grosbois, C., Meybeck, M., Horowitz, A., & Ficht, A. (2006). The spatial and temporal trends of Cd, Cu, Hg, Pb and Zn in Seine River floodplain deposits (1994–2000). The Science of the Total Environment, 356(1–3), 22–37.

    CAS  Google Scholar 

  • Guitián, F., & Carballas, T. (1976). Técnicas de Análisis de Suelos (Soil Analyses Techniques). Pico Sacro (Eds).

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14(8), 975–1001.

    Article  Google Scholar 

  • Hanna, K. (2007). Adsorption of aromatic carboxylate compounds on the surface of synthesized iron oxide-coated sands. Applied Geochemistry, 22(9), 2045–2053.

    Article  CAS  Google Scholar 

  • Horowitz, A. (1991). A primer on sediment-trace element chemistry. New York: CRC.

    Google Scholar 

  • Idris, A. M. (2008). Combining multivariate analysis and geochemical approaches for assessing heavy metal level in sediments from Sudanese harborg along the Red Sea Coast. Microchemical Journal, 90, 159–163. doi:10.106/j.microc.2008.05.004.

    Article  CAS  Google Scholar 

  • Krauskopf, K. B. (1967). Introduction to geochemistry. New York: McGraw-Hill.

    Google Scholar 

  • Langston, W., Burt, G., & Pope, N. (1999). Bioavailability of metals in sediments of the dogger bank (Central North Sea): A mesocosm study. Estuarine Coastal and Shelf Science, 48, 519–540.

    Article  CAS  Google Scholar 

  • Long, E., MacDonald, D., Smith, S., & Calder, F. (1995). Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environmental Management, 19, 81–97.

    Article  Google Scholar 

  • Lu, X., Werner, I., & Young, T. (2005). Geochemistry and bioavailability of metals in sediments from northern San Francisco Bay. Environmental International, 31, 593–602.

    Article  CAS  Google Scholar 

  • Marengo, E., Gennaro, M., Robotti, E., Rossanigo, P., Rinando, C., & Roz-Gataldi, M. (2006). Investigation of anthropic effects connected with metal ions concentration, organic matter and grain size in Bormida river sediments. Analytica Chimica Acta, 560(1–2), 172–183.

    Article  CAS  Google Scholar 

  • Mendiguchía, C., Moreno, C., Mánuel-Vez, M., & García-Vargas, M. (2005). Preliminary investigation on the enrichment of heavy metals in marine sediments originated from intensive aquaculture effluents. Aquaculture, 254(1–4), 317–325.

    Google Scholar 

  • Mil-Homens, M., Stevens, R. L., Cato, I., & Abrantes, F. (2007). Regional geochemical baselines for Portuguese shelf sediments. Environmental Pollution, 148(2), 418–427.

    Article  CAS  Google Scholar 

  • Morillo, J., Usero, J., & Gracia, I. (2002). Partitioning of metals in sediments from the Odiel Rivel (Spain). Environmental International, 28, 263–271.

    Article  CAS  Google Scholar 

  • Murphy, J., & Riley, J. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31–36.

    Article  CAS  Google Scholar 

  • NFESC (2003). Guidance for environmental monitoring analysis. Volume II: sediment. Batelle Memorial Institute, Earth Tech, Inc., NewFields, Inc. (Eds.). Available online (November 2008) at: http://web.ead.anl.gov/ecorisk/related.

  • Pekey, H. (2006). Heavy metal pollution assessment in sediments of the Izmit Bay, Turkey. Environmental Monitoring and Assessment, 123(1–3), 219–231.

    Article  CAS  Google Scholar 

  • Perez-Arlucea, M., Mendez, G., Clemente, F., Nombela, M., Rubio, B., & Filgueira, M. (2005). Hydrology, sediment yield, erosion and sedimentation rates in the estuarine environment of the Ria de Vigo, Galicia, Spain. Journal of Marine Systems, 54(1–4 SPEC. ISS.), 209–226.

    Article  Google Scholar 

  • Poulton, S., & Raiswell, R. (2005). Chemical and physical characteristics of iron oxides in riverine and glacial meltwater sediments. Chemical Geology, 218, 203–221.

    Article  CAS  Google Scholar 

  • Puga, M. (1982). Estudio de los suelos sobre gabros (Study of the soils over gabbros) Ph.D. Santiago de Compostela University.

  • Queralt, I., Barreiros, M., Carvalho, M., & Costa, M. (1999). Application of different techniques to assess sediment quality and point source pollution to low-level contaminates estuarine recent sediments (Lisboa coast, Portugal). The Science of the Total Environment, 241, 39–51.

    Article  CAS  Google Scholar 

  • Ranashinghe, P., Chandrajith, R., Dissanayake, C., & Rupasinghe, M. (2002). Importance of grain size factor in distribution of trace elements in stream sediments of tropical high grade terrains—A case study from Sri Lanka. Chemie der Erde-Geochemistry, 62, 243–253.

    Article  Google Scholar 

  • Reimann, C., & Caritat, P. (2005). Distinguishing between natural and anthropogenic sources for elements in the environment: Regional geochemical surveys versus enrichment factors. The Science of the Total Environment, 337, 91–107.

    Article  CAS  Google Scholar 

  • Rhoads, B., & Cahill, R. (1999). Geomorphological assessment of sediment contamination in an urban stream system. Applied Geochemistry, 14, 459–483.

    Article  CAS  Google Scholar 

  • Sanchiz, C., García-Carrascosa, A., & Pastor, A. (2001). Relationships between sediment physico-chemical characteristics and heavy metal bioaccumulation in Mediterranean soft bottom macrophytes. Aquatic Botany, 69, 63–73.

    Article  CAS  Google Scholar 

  • Schwertmann, U. (1964). Differienzierung der Eisenoxide des Bodens durch Extraktion mit Ammonium Oxalat-Lösung. Z Planzernäh Dung Bodenk, 105, 194–202.

    Article  CAS  Google Scholar 

  • Shazili, N. A. M., Kamaruzzaman, B. Y., Antonina, N. A., Zauyah, S., Bidai, J., Shamsudin, A. A., et al. (2007). Interpretation of anthropogenic input of metals in the South China Sea bottom sediments off Terengganu (Malaysia) coastline using Al as a reference element. Aquatic Ecosystems and Health, 10(1), 47–56.

    Article  CAS  Google Scholar 

  • Shuman, L. M. (1982). Separating soil iron and manganese oxide fractions for microelement analysis. Soil Science Society of American Journal, 46, 1099–1102.

    Article  CAS  Google Scholar 

  • Singh, A. K., Hasnain, S. I., & Banerjee, D. K. (1999). Grain size and geochemical partitioning of heavy metals in sediments of the Damodar River – A tributary of the lower Ganga, India. Environmental Geology, 39(1), 90–98.

    Article  CAS  Google Scholar 

  • Singh, M., Müller, G., & Singh, I. (2003). Geogenic distribution and baseline concentration of heavy metals in sediments of the Ganges River, India. Journal of Geochemistry Exploration, 80, 1–17.

    Article  CAS  Google Scholar 

  • Soto-Jiménez, M., Páez-Osuna, F., & Ruiz-Fernández, A. (2003). Geochemical evidences of the anthropogenic alteration of trace metal composition of the sediments of Chiricahueto marsh (SE Gulf of California). Environmental Pollution, 125, 423–432.

    Article  Google Scholar 

  • Stecko, J. R. P., & Bendell-Young, L. (2000). Contrasting the geochemistry of suspended particulate matter and deposited sediments within an estuary. Applied Geochemistry, 15, 753–775.

    Article  CAS  Google Scholar 

  • Szefer, P., Glasby, G., Stüben, D., Kusak, A., Geldon, J., Berner, Z., et al. (1999). Distribution of selected heavy metals and rare earth elements in surficial sediments from the polish sector of the Vistula Lagoon. Chemosphere, 39(15), 2785–2798.

    Article  CAS  Google Scholar 

  • Tuncel, S. G., Tugrul, S., & Topal, T. (2007). A case study on trace metals in surface sediments and dissolved inorganic nutrients in surface water of O"lu"deniz Lagoon-Mediterranean, Turkey. Water Research, 41(2), 365–372.

    Article  CAS  Google Scholar 

  • Turner, A., Millward, G., & Le Roux, S. (2004). Significance of oxides and particulate organic matter in controlling trace metal partitioning in a contaminated estuary. Marine Chemistry, 88, 179–192.

    Article  CAS  Google Scholar 

  • Ujevic, I., Odzak, N., & Baric, A. (2000). Trace metal accumulation in different grain size fractions of the sediments from a semi-enclosed bay heavily contaminated by urban and industrial wastewaters. Water Research, 34(11), 3055–3061.

    Article  CAS  Google Scholar 

  • U.S. EPA (United States Environmental Protection Agency) (2000). Guidance for data quality assessment: Practical methods for data analysis. EPA QA/G-9, QA 00 Update. EPA/600/R-96/084. Washington, DC: Office of Environmental Information.

    Google Scholar 

  • Wang, S., Cao, Z., Lan, D., Zheng, Z., & Li, G. (2008). Concentration distribution and assessment of several heavy metals in sediments of west-four Pearl River Estuary. Environmental Geology, 55(5), 963–975.

    Article  CAS  Google Scholar 

  • Wedepohl, K. (1995). The composition of the continental crust. Geochimica et Cosmochimica Acta, 59(7), 1217–1232.

    Article  CAS  Google Scholar 

  • Zhang, C., Wang, L., Li, G., Dong, S., Yang, J., & Wang, X. (2002). Grain size effect on multi-element concentrations in sediments from intertidal flats of Bohai Bay, India. Applied Geochemistry, 17, 59–68.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa Devesa-Rey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Devesa-Rey, R., Díaz-Fierros, F. & Barral, M.T. Assessment of enrichment factors and grain size influence on the metal distribution in riverbed sediments (Anllóns River, NW Spain). Environ Monit Assess 179, 371–388 (2011). https://doi.org/10.1007/s10661-010-1742-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-010-1742-7

Keywords

Navigation