Spatial and seasonal distribution of nitrate-N in groundwater beneath the rice–wheat cropping system of India: a geospatial analysis

Abstract

Increased use of nitrogenous fertilizers in the intensively cultivated rice (Oryza sativa)–wheat (Triticum aestivum) cropping system (covers a 13.5-ha m area in South Asia) has led to the concentration of nitrates (NO3-N) in the groundwater (GW) in Haryana State of India. Six districts from the freshwater zone were selected to identify factors affecting NO3-N enrichment in GW. Water and soil samples were collected from 1,580 locations and analyzed for their chemical properties. About 3% (26,796, and 10,588 ha) of the area was estimated to be under moderately high (7.5–10 mg l − 1) and high (>10 mg l − 1) risk categories, respectively. The results revealed that NO3-N was 10–50% higher during the pre-monsoon season than in the monsoon season. Nitrate-N decreased with the increase in aquifer depth (r 2 = 0.99). Spatial and proximity analyses using ArcGIS (9.2) revealed that (1) clay material in surface and sub-surface texture restricts N leaching, (2) piedmont and rolling plains act as an N sink, and (3) perennial rivers bring a dilution effect whereas seasonal rivers provide favorable conditions for NO3 enrichment. The study concludes that chemical N fertilizers applied in agro-ecosystems are not the sole factor determining the NO3 in groundwater; rather, it is an integrated process governed by several other factors including physical and chemical properties of soils, proximity and type of river, and geomorphologic and geographical aspects. Therefore, future studies should adopt larger area (at least watershed scale) to understand the mechanistic pathways of NO3 enrichment in groundwater and interactive role of the natural drainage system and surrounding physical features. In addition, the study also presents a conceptual framework to describe the process of nitrate formation and leaching in piedmont plains and its transportation to the mid-plain zone.

This is a preview of subscription content, access via your institution.

References

  1. Agrawal, G. D. (1999). Diffuse agricultural water pollution in India. Water Science & Technology, 39, 33–47.

    Article  CAS  Google Scholar 

  2. Agrawal, G. D., Lunkad, S. K., & Malkhed, T. (1999). Diffuse agricultural nitrate pollution of groundwaters in India. Water Science & Technology, 39, 67–75.

    Article  CAS  Google Scholar 

  3. Angurala, M. L., Gupta S., & Gupta, A. (2007). Ground water information booklet of Yamunanagar, Haryana (pp. 1–19). Central Ground Water Board, Ministry of Water Resources, Govt. of India, North-western region, Chandigarh.

  4. Banaszuk, P., Wysocka-Czubaszek, A., & Kondratiuk, P. (2005). Spatial and temporal patterns of groundwater chemistry in the river riparian zone. Agriculture, Ecosystems and Environment, 107, 167–179.

    Article  CAS  Google Scholar 

  5. Bayraktar, H., Turalioglu, F., & Sezer, F. (2005). A Kriging-based approach for locating a sampling site in the assessment of air quality. Stochastic Environmental Research and Risk Assessment, 19, 301–305.

    Article  Google Scholar 

  6. Beaudoin, N., Saad, J. K., Van, L. C., Machet, J. M., Maucorps, J., & Mary, B. (2005). Nitrate leaching in intensive agriculture in Northern France: Effect of farming practices, soils and crop rotations. Agriculture, Ecosystems & Environment, 111, 292–310.

    Article  CAS  Google Scholar 

  7. Becker, M., Asch, F., Maskey, S. L., Pande, K. R., Shah, S. C., & Shrestha, S. (2007). Effects of transition season management on soil N dynamics and system N balances in rice-wheat rotations of Nepal. Field Crops Research, 103, 98–108.

    Article  Google Scholar 

  8. Behera, S. K., & Panda, R. K. (2009). Effect of fertilization and irrigation schedule on water and fertilizer solute transport for wheat crop in a sub-humid sub-tropical region. Agriculture, Ecosystems and Environment, 130, 141–155.

    Article  CAS  Google Scholar 

  9. Bhumbal, D. K. (2006). Agriculture practice and nitrate pollution of water cited in website of West Virginia University Extension Service-Soil Management.

  10. Bouma, J. (1992). Influence of soil macroporosity on environmental quality. Advances in Agronomy, 47, 1–37.

    Article  Google Scholar 

  11. Bouman, B. A. M., Castaneda, A. R., & Bhuiyan, S. I. (2002). Nitrate and pesticide contamination of groundwater under rice-based cropping systems: Past and current evidence from the Philippines. Agriculture, Ecosystems and Environment, 92, 185–199.

    Article  CAS  Google Scholar 

  12. Burns, D. A., Boyer, E. W., Elliott, E. M., & Kendall, C. (2009). Sources and transformations of Nitrate nitrate from streams draining varying land uses: Evidence from dual isotope analysis. Journal of Environment Quality, 38, 1149–1159.

    Article  CAS  Google Scholar 

  13. Chandna, P., Ladha, J. K., Singh, U. P., Punia, M., Erenstein, O., Pathak, H., et al. (2009). Technology targeting in underused lands in the Gangetic Plains of South Asia. In Ladha et al. (Eds.), Integrated crop and resource management in the rice-wheat system of South Asia (pp. 235–253). Philippines: International Rice Research Institute.

    Google Scholar 

  14. Chatterjee, R., Tarafder, G., & Paul, S. (2009). Groundwater quality assessment of Dhanbad district, Jharkhand, India. Bulletin of Engineering Geology and the Environment, 69, 137–141.

    Article  Google Scholar 

  15. Chen, J., Tang, C., Sakura, Y., & Yu, J. F. (2004). Nitrate pollution from agriculture in different hydrogeological zones of the regional groundwater flow system in the North China plain. Hydrogeology Journal, 13, 481–492.

    Article  Google Scholar 

  16. Das, P., & Gupta, S. (2007a). Ground water information booklet of Karnal, Haryana (pp. 1–19). Central Ground Water Board, Ministry of Water Resources, Government of India, North-western region, Chandigarh.

  17. Das, P., & Gupta, S. (2007b). Ground water information booklet of Kurukshetra, Haryana (pp. 1–20). Central Ground Water Board, Ministry of Water Resources, Government of India, North-western region, Chandigarh.

  18. Datta, P. S., Deb, D. L., & Tyagi, S. K. (1997). Assessment of groundwater contamination from fertilizers in the Delhi area based on 18O, NO3 and K +  composition. Journal of Contaminant Hydrology, 27, 249–262.

    Article  CAS  Google Scholar 

  19. Dorich, R. A., & Nelson, D. W. (1984). Evaluation of manual cadmium reduction methods for determination of nitrate in potassium chloride extracts of soils. Soil Science Society of America Journal, 48, 72–75.

    Article  CAS  Google Scholar 

  20. Emery, X. (2005). Simple and ordinary kriging multigaussian kriging for estimating recoverable reserves. Mathematical Geology, 37, 295–319.

    Article  CAS  Google Scholar 

  21. Erenstein, O., Hellin, J., & Chandna, P. (2010). Poverty mapping based on livelihood assets: A meso-level application in the Indo-Gangetic Plains, India. Applied Geography, 30, 112–125.

    Article  Google Scholar 

  22. Estrany, J., Batalla, C., & Ramon, J. (2009). Groundwater control on the suspended sediment load in the Na Borges River, Mallorca, Spain. Geomorphology, 106, 292–303.

    Article  Google Scholar 

  23. Fennessy, M. S., & Cronk, J. K. (1997). The effectiveness and restoration potential of riparian ecotones for the management of nonpoint source pollution, particularly nitrate. Critical Reviews in Environmental Science and Technology, 27, 285–317.

    Article  CAS  Google Scholar 

  24. Freeze, R. A., & Cherry, J. A. (1979). Groundwater (pp. 1–556). Englewood Cliffs: Prentice Hall Inc.

    Google Scholar 

  25. Gupta, A., & Gupta, S. (2007). Ground water information booklet of Panipat, Haryana (pp. 1–17). Central Ground Water Board, Ministry of Water Resources, Government of India, North-western region, Chandigarh.

  26. GWC (2002). Ground water atlas, ground water cell (pp. 1–45). Haryana, Chandigarh: Department of Agriculture.

    Google Scholar 

  27. Haag, D., & Kaupenjohann, M. (2001). Landscape fate of nitrate fluxes and emissions in Central Europe: A critical review of concepts, data, and models for transport and retention. Agriculture, Ecosystems and Environment, 86, 1–21.

    Article  CAS  Google Scholar 

  28. Jackson, M. L. (1958). Soil chemical analysis. Englewood Cliffs: Prentice-Hall Inc.

    Google Scholar 

  29. Jain, C. K., Bandyopadhyay, A., & Bhadra, A. (2009). Assessment of groundwater quality for drinking purpose, District Nainital, Uttarakhand, India. Environmental Monitoring and Assessment, 66, 663–676.

    Google Scholar 

  30. Jain, P., Sharma, J. D., Sohu, D., & Sharma, P. (2006). Chemical analysis of drinking water of villages of Sanganer Tehsil, Jaipur District. International Journal of Environmental Science and Technology, 2, 373–379.

    CAS  Google Scholar 

  31. Johnston, K. M., Jay, H. V., Krivoruchko, K., & Lucas, N. (2001). Using ArcGISgeostatistical analyst, GIS by ESRI (pp. 1–300). USA: ESRI Press.

    Google Scholar 

  32. Kaown, D., Hyun, Y., Bae, G., & Lee, K. (2007). Factors affecting the spatial pattern of nitrate contamination in shallow Groundwater. Journal of Environment Quality, 36, 1479–1487.

    Article  CAS  Google Scholar 

  33. Kaown, D., Koh, D., Mayer, B., & Lee, K. (2009). Identification of nitrate and sulfate sources in groundwater using dual stable isotope approaches for an agricultural area with different land use (Chuncheon, mid-eastern Korea). Agriculture, Ecosystems and Environment, 132, 223–231.

    Article  CAS  Google Scholar 

  34. Khan, S. A., & Gupta, S. (2007). Ground water information booklet of Ambala, Haryana (pp. 1–18). Central Ground Water Board, Ministry of Water Resources, Government of India, North-western region, Chandigarh.

  35. Komor, S. C., & Anderson, H. W. Jr. (1993). Nitrogen isotopes as indicators of nitrate sources in Minnesota sand-plain aquifers. Ground Water, 31, 260.

    Article  CAS  Google Scholar 

  36. Kundu, M. C., & Mandal, B. (2009). Nitrate enrichment in groundwater from long-term intensive agriculture: Its mechanistic pathways and prediction through modeling. Environment Science and Technology, 43(15), 5837–5843.

    Article  CAS  Google Scholar 

  37. Kundu, M. C., Mandal, B., & Sarkar, D. (2008). Assessment of the potential hazards of nitrate contamination in surface and groundwater in a heavily fertilized and intensively cultivated district of India. Environmental Monitoring and Assessment, 146, 183–189.

    Article  CAS  Google Scholar 

  38. Lake, I. R., Lovett, A. A., Hiscock, K. M., Betson, M., Foley, A., Sunnenberg, G., et al. (2003). Evaluating factors influencing groundwater vulnerability to nitrate pollution: Developing the potential of GIS. Journal of Environmental Management, 68, 315–328.

    Article  Google Scholar 

  39. Lian, J., & Karamones, R. E. (1993). DTPA-extractable Fe, Mn, Cu, Zn. P. 87–90. In M. R. Carter (Ed.), Soil sampling and methods of analysis. Canadian Society of Soil Science, Lewis Publishers.

  40. Liu, G. D., Wu, W. L., & Zhang, J. (2005). Regional differentiation of non-point source pollution of agriculture-derived nitrate nitrogen in groundwater in northern China. Agriculture, Ecosystems and Environment, 107, 211–220.

    Article  CAS  Google Scholar 

  41. Lunkad, S. K. (1988). Water resources and ecosystem in Haryana, an overview. BHU-JAL News, Quarterly. Journal of Central Groundwater Board, 3, 18–21.

    Google Scholar 

  42. Magner, J. A., Payne, G. A., & Steffen, L. J. (2004). Drainage effects on stream nitrate-N and hydrology in south-central Minnesota (USA). Environmental Monitoring and Assessment, 91, 183–198.

    Article  CAS  Google Scholar 

  43. Malhi, S. S., Johnston, A. M., Gill, K. S., & Pennock, D. J. (2004). Landscape position effects on the recovery of 15N-labelled urea applied to wheat on two soils in Saskatchewan, Canada. Nutrient Cycling in Agroecosystems, 68, 85–93.

    Article  CAS  Google Scholar 

  44. Maxwell, S. K., Wood, E. C., & Janus, A. (2008). Comparison of the USGS 2001 NLCD to the 2002 USDA Census of Agriculture for the Upper Midwest United States. Agriculture, Ecosystems and Environment, 127, 141–145.

    Article  Google Scholar 

  45. Mosley, M. P. (1982). Subsurface flow velocities through selected forest soil, South Island, New Zealand. Journal of Hydrology, 55, 65–92.

    Article  Google Scholar 

  46. Narayanamoorthy, A. (2010). India’s groundwater irrigation boom: Can it be sustained? Water Policy, 12, 543–563.

    Article  Google Scholar 

  47. Oehler, F., Bordenave, P., & Durand, P. (2007). Variations of denitrification in a farming catchment area. Agriculture, Ecosystems and Environment, 120, 313–324.

    Article  CAS  Google Scholar 

  48. Olsen, S. R., Cole, C. V., Watanabe, F. S., & Dean, L. A. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate (pp. 1–939). U.S. Dept. of Agric. Circ.

  49. Opdyke, M. R., David, M. B., & Rhoads, B. L. (2006). Influence of geomorphological variability in channel characteristics on sediment denitrification in agricultural streams. Journal of Environment Quality, 35, 2103–2112.

    Article  CAS  Google Scholar 

  50. Prasad, V. K., Badarinath, K. V. S., Yonemura, S., & Tsuruta, H. (2004). Regional inventory of soil surface nitrogen balances in Indian agriculture (2000–2001). Journal of Environmental Management, 73, 209–218.

    Article  Google Scholar 

  51. Rao, E. V. S., & Prakasa, P. K. (2000). Nitrates, agriculture and environment. Current Science, 79, 1163–1168.

    CAS  Google Scholar 

  52. Rao, S. N. (2006). Nitrate pollution and its distribution in the groundwater of Srikakulam district, Andhra Pradesh, India. Environmental Geology, 51, 631–645.

    Article  CAS  Google Scholar 

  53. Reddy, A. G. S., Niranjan Kumar, K., Subba Rao, D., & Sambashiva Rao, S. (2009). Assessment of nitrate contamination due to groundwater pollution in north eastern part of Anantapur District, A.P., India. Environment Monitoring and Assessment, 148, 463–476.

    Article  CAS  Google Scholar 

  54. Rehman, B., Sial, J. K., Arshad, M., & Zaman-UZ-Waheed (1999). Effect of fertilizer doses on nitrate-nitrogen leaching. International Journal of Agriculture & Biology, 1, 356–358.

    Google Scholar 

  55. Robbins, G. A. (1989). Influence of using purged and partially penetrating monitoring wells on contaminant detection, mapping and modeling. Groundwater, 27, 155–162.

    CAS  Google Scholar 

  56. Rodell, M., Velicogna, I., & Famiglietti, J. S. (2009). Satellite-based estimates of groundwater depletion in India. Nature, 460, 999–1002.

    Article  CAS  Google Scholar 

  57. Sankararamakrishnan, N., Sharma, A. K., & Iyengar, L. (2008). Contamination of nitrate and fluoride in groundwater along the Ganges Alluvial Plain of Kanpur district, Uttar Pradesh, India. Environment Monitoring and Assessment, 146, 375–382.

    Article  CAS  Google Scholar 

  58. Sarin, M. M., Krishnaswami, S., Trivedi, J. R., & Sharma, K. K. (1992). Major ion chemistry of Ganga Sources Waters: Weathering in the high altitude Himalaya. Proceedings—Indian Academy of Sciences. A Earth and Planetary Sciences, 101–1, 89–98.

    Google Scholar 

  59. Schofield, R. R., & Taylor, A. W. (1955). The measurement of soil pH. Soil Sci. Soc. Am. Proc., 19, 164–167.

    Article  CAS  Google Scholar 

  60. Sharma, A., & Gupta, S. (2007). Groundwater information booklet of Kaithal, Haryana (pp. 1–24). Central Ground Water Board, Ministry of Water Resources, Government of India, North-western region, Chandigarh.

  61. Sharma, S. K. (2003). Characterization and mapping of rice-wheat system: Its changes and constraints to system sustainability (pp. 1–145). Report of Irrigated Agro-Ecosystem-NATP, PDCSR (ICAR), Modipuram, India.

  62. Sharpley, A. N., Syers, J. K., & Tillman, R. W. (1983). Transport of ammonium- and nitrate-nitrogen in surface runoff from pasture as influenced by urea application. Water, Air, & Soil Pollution, 20, 425–430.

    Article  CAS  Google Scholar 

  63. Shukla, U. K., & Bora, D. S. (2003). Geomorphology and sedimentology of Piedmont zone, Ganga Plain, India. Current Science, 84, 1034–1040.

    Google Scholar 

  64. Singh, K. P., Singh, V. K., Mallik, A., & Basant, N. (2006). Distribution of nitrogen species in groundwater aquifers of an industrial area in alluvial Indo-Gangetic Plains—A case study. Environmental Geochemistry and Health, 28(5), 473–485.

    Article  CAS  Google Scholar 

  65. Songlin, F., Joe, S., & Vance, M. (2007). Spatial habitat modeling of American chestnut at Mammoth Cave National Park. Forest Ecology and Management, 252, 201–207.

    Article  Google Scholar 

  66. Tanwar, B. S., & Kruseman, G. P. (1985). Saline groundwater management in Haryana State, India (pp. 24–30). Hydrogeology in the Service of Man, Memories of the 18th Congress of the International Association of Hydrogeologists, Cambridge.

  67. Tesoriero, A. J., Duff, J. H., Wolock, D. M., Spahr, N. E., & Almendiger, J. E. (2009). Identifying pathways and processes affecting nitrate and orthophoshate inputs to streams in agricultural watersheds. Journal of Environment Quality, 38, 1892–1900.

    Article  CAS  Google Scholar 

  68. Tian, Y., Yin, B., Yang, L., Yin, S., & Zhu, Z. (2007). Nitrogen runoff and leaching losses during rice-wheat rotations in Taihu Lake Region, China. Pedosphere, 17, 445–456.

    Article  CAS  Google Scholar 

  69. Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 63, 251–263.

    Article  Google Scholar 

  70. WHO (1985). Health hazards from nitrate in drinking-water (pp. 1–102). Report on a WHO meeting, Copenhagen, 5–9 March 1984. Copenhagen, WHO Regional Office for Europe. Environmental Health Series No. 1.

  71. Yadav, R. L., & Subbarao, A. V. M. (2001). Atlas of cropping systems in India (pp. 1–67). Bulletin No. 2001–2. PDCSR (ICAR), Modipuram, India.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jagdish K. Ladha.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chandna, P., Khurana, M.L., Ladha, J.K. et al. Spatial and seasonal distribution of nitrate-N in groundwater beneath the rice–wheat cropping system of India: a geospatial analysis. Environ Monit Assess 178, 545–562 (2011). https://doi.org/10.1007/s10661-010-1712-0

Download citation

Keywords

  • Cropping system
  • Geomorphology
  • Groundwater
  • Nitrate
  • Proximity analysis
  • Risk categories