Skip to main content
Log in

Trophic state index of a lake system using IRS (P6-LISS III) satellite imagery

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Water pollution has now become a major threat to the existence of living beings and water quality monitoring is an effective step towards the restoration of water quality. Lakes are versatile ecosystems and their eutrophication is a serious problem. Carlson Trophic State Index (CTSI) provides an insight into the trophic condition of a lake. CTSI has been modified for the study area and is used in this study. Satellite imagery analysis now plays a prominent role in the quick assessment of water quality in a vast area. This study is an attempt to assess the trophic state index based on secchi disk depth and chlorophyll a of a lake system (Akkulam–Veli lake, Kerala, India) using Indian Remote Sensing (IRS) P6 LISS III imagery. Field data were collected on the date of the overpass of the satellite. Multiple regression equation is found to yield superior results than the simple regression equations using spectral ratios and radiance from the individual bands, for the prediction of trophic state index from satellite imagery. The trophic state index based on secchi disk depth, derived from the satellite imagery, provides an accurate prediction of the trophic status of the lake. IRS P6-LISS III imagery can be effectively used for the assessment of the trophic condition of a lake system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allee, R. J., & Johnson, J. E. (1999). Use of satellite imagery to estimate surface chlorophyll-a and secchi disk depth of Full Shoals Reservoir, Arkansas, USA. International Journal of Remote Sensing, 20(6), 1057–1072.

    Article  Google Scholar 

  • APHA (2005). Standard methods of analysis of water, waste water (21 ed.). Washington DC: American Public Health Association.

    Google Scholar 

  • Brezonik, P. L., Kloiber, S. M., Olmanson, L., & Bauer, M. (2002a). Satellite and GIS tools to assess lake quality. University Minnesota, Water Resources Center, Technical report 145.

  • Brezonik, P. L., Kloiber, S. M., Olmanson, L., & Bauer, M. (2002b). Use of Satellite Imagery for Water Clarity Assessment of Minnesota’s 10,000 lakes. University Minnesota, Water Resources Center.

  • Carlson, R. E. (1977). A trophic state index for lakes. Limnology and Oceanography, 22(2), 361–369.

    Article  CAS  Google Scholar 

  • Carlson, R. E. (1980). More complications in the chlorophyll-Secchi disk relationship. Limnology and Oceanograpy, 25(2), 379–382.

    Article  CAS  Google Scholar 

  • Carlson, R. E. (1991). Expanding the trophic state concept to identify non-nutrient limited lakes and reservoirs. Enhancing the State’s Lake Management Programs, 1991, 59–71.

    Google Scholar 

  • Cheng, K. S., Lei, T. S., & Yeh, H. C. (2001). Reservoir trophic state evaluation using landsat TM images. Journal of American Water Resources Association, 37(5), 1321–1334.

    Article  CAS  Google Scholar 

  • Chipman, J. R., Kiefer, R., & Lillesand, T. (2004). Remote sensing. In R. Dorf (Ed), The Engineering Handbook, 2nd edn. Boca Raton: CRC Press.

    Google Scholar 

  • Dekker, A. G. (1993). Detection of optical water parameters for eutrophic lakes by High Resolution Remote Sensing. Ph. D. Thesis. Free University, Amsterdam.

  • Dekker, A. G. (1997). Operational tool for remote sensing of water quality: A prototype tool kit. Vrije Universitie, Amsterdam, Institute of Environmental Studies. BCRS Report 96-18.

  • Dekker, A. G., & Peters, S. W. M. (1993). The use of Thematic Mapper for the analysis of eutrophic lakes: A case study in the Netherlands. International Journal of Remote Sensing, 14, 799–821.

    Article  Google Scholar 

  • Ekercin, S. (2007). Water quality retrievals from high resoluation Ikonos Multispectral imagery: A case study in Istanbul, Turkey. Water, Air and Soil Pollution, 183 (1–4), 239–251. Springer Netherlands.

    Article  CAS  Google Scholar 

  • Florida Lakewatch (2000). A beginner’s guide to water management—The ABCs. Department of Fisheries and Aquatic sciences, Institute of Food and Agricultural Sciences. University of Florida. http://lakewatch.ifas.ufl.edu/LWcirc.html.

  • Fraser, R. S. (1998). Multispectral remote sensing of turbidity among Nebraska Sand Hills lakes. International Journal of Remote Sensing, 19, 3011–3016.

    Article  Google Scholar 

  • Fraser, R. S., Ferrare, R. A., Kaufman, Y. J., Markham, B. L., & Matto, S. (1992). Algorithm for atmospheric corrections of aircraft and satellite imagery. International Journal of Remote Sensing, 13, 541–557.

    Article  Google Scholar 

  • Fuller, L. M., Aichele, S. S., & Minnerick, R. J. (2004). Predicting water quality by relating secchi-disk transparency and chlorophyll-measurements to satellite imagery for Michigan inland lakes, August 2002: U. S. Geological Survey Scientific Investigations Report, 5086.

  • Giardino, C., Pepe, M., Brivio, P. A., & Ghezzi, E. (2001). Detecting chlorophyll, secchi disk depth and surface temperature in a sub-alpine lake using Landsat imagery. The Science of the Total Environment, 268, 19–29.

    Article  CAS  Google Scholar 

  • Gitelson, A., Garbuzov, G., Szilagyi, F., Mittenzwey, K. H., Karnieli, K., & Kaiser, A. (1993). Quantitative remote sensing methods for real time monitoring of inland water quality. International Journal of Remote Sensing, 14, 1269–1295.

    Article  Google Scholar 

  • Guang, J., Wei, Y., & Jiazhu, H. (2006). A model for the retrieval of suspended sediment concentrations in Taihu Lake from TM images. Journal of Geographical Sciences, 16, 458–464.

    Article  Google Scholar 

  • Harding, L. W., Itsweire, E. C., & Esaias, W. E. (1995). Algorithm development for recovering chlorophyll concentrations in the Chesapeake Bay using aircraft remote sensing, 1989–91. Photogrammetric Engineering and Remote Sensing, V. 61, 177–185.

    Google Scholar 

  • Havens, K. E. (2000). Using trophic state index (TSI) values to draw inferences regarding phytoplankton limiting factors and seston composition from routine water quality monitoring data. Korean Journal of Limnology, 33(3), 187–196.

    Google Scholar 

  • Jie, G., Yuchun, W., & Jiazhu, H. (2006). A model for the retrieval of suspended sediment concentrations in Taihu lake from TM images. Journal of Geospatial Sciences, 16(4), 458–464. Science China Press, co-published with Springer.

    Google Scholar 

  • Jupp, D. L., Byrne, G., Mc Donald, E., Anstee, J., Harris, G., & Smith, J. (1994a). Monitoring optical water quality of the Hawkesbury River using airborne remote sensing. CSIRO Division of Water Resources, Consultancy Report No. 94/9.

  • Jupp, D. L., Kirk, J. T. O., & Harris, G. P. (1994b). Detection, identification and mapping of cyanobacteria using remote sensing to measure the optical quality of turbid inland waters. Australian Journal of Freshwater Research, 45, 801–828.

    Article  Google Scholar 

  • Ke-Sheng, C., Tsu-Chiang, L., & Hui-Chung, Y. (1998). Reservoir water quality monitoring using Landsat TM images and indicator Kirging. http://www.gisdevelopment.net/aars/acrs/1998/ts2/ts2004.org.

  • Krizanich, G. W. (1986). Landsat trophic state assessment of Fellows Lake. Missouri State University, Masters thesis, 64 p.

  • Kumar, T. N., & Singh, P. (1997). Mapping chlorophyll-a in Upper lake, Bhopal using IRS-1C data. www.gisdevelopment.net/application/environment/water/watq0002.htm.

  • Lathrop, R. G., & Lillesand, T. M. (1989). Monitoring water quality and river plume transport in Green Bay, Lake Michigan with SPOT-I imagery. Photogrammetric Engineering and Remote Sensing, 55(3), 349–354.

    Google Scholar 

  • Lavery, P., Pattiaratchi, C., Wyllie, A., & Hick, P. (1993). Water quality monitoring in estuarine waters using the Landsat Thematic Mapper. Remote Sensing of Environment, 3, 268–280.

    Article  Google Scholar 

  • Lillesand, T. M., Johnson, W. L., Deuell, R. L., Lindstrom, O. M., & Meisner, D. E. (1983). Use of Landstat data to predict the Trophic State of Minnesota lakes. Photogammetric Engineering and Remote Sensing, 49(2), 219–229.

    Google Scholar 

  • Mabwoga, S. O., Chawla, A., & Thukarai, A. K. (2009). Assessment of water quality parameters of the Harike wetland in India, a Ramsar site, using IRS LISS IV satellite data. Environmental Monitoring and Assessment, Springer Netherlands, 0167-6369.

  • Ming-Der, Y., Carolyn, M. J., & Robert, S. M. (1996). Adaptive short term water quality forecasts using remote sensing and GIS. American Water Resources Association GIS Symposium.

  • Olmanson, L. G. (1997). Satellite remote sensing of the trophic state conditions of the lakes in the Twin Cities Metropolitian Area. M.S. Paper. Water Resources Science, University of Minnesota, St. Paul, MN.

  • Olmanson, L. G., Bauer, M. E., & Brezonik, P. L. (2002). Use of Landsat imagery to develop a water quality atlas of Minnesota’s 10,000 lakes. Proceedings of FIEOS 2002, Conference/Land Satellite Information IV/ISPRS Commission I. April 25–27, 2002, Washington DC.

  • Olmanson, L. G., Bauer, M. E., & Brezonik, P. L. (2008). Development and analysis of a 20-year Landsat water clarity census of Minnesota’s 10,000 lakes. Remote Sensing of Environment, Special issue on Monitoring Freshwater and Estuarine Systems.

  • Olmanson, L. G., Kloiber, S. M., Bauer, M. E., & Brezonik, P. L. (2001). Image processing protocol for regional assessment of lake water quality, Public Report Series No. 14, Water Resources Centre and Remote Sensing Laboratory, university of Minnesota.

  • Ritchie, J. C., & Cooper, C. M. (1991). An algorithm of estimation surface suspended sediment concentrations with Landsat MSS digital data. Water Resources Bulletin, 27(3), 373–379.

    Google Scholar 

  • Robinove, C. J. (1982). Computation with physical values from Landsat digital data. Photogrammetric Engineering and Remote Sensing, 48(5), 781–784.

    Google Scholar 

  • Saxena, M. M. (1998). Environmental analysis water, soil, and air, 2nd Edn. Bikaner: Agro Botanica, pp. 24–26.

    Google Scholar 

  • Schneider, K., & Mauser, W. (1996). Processing and accuracy of Landsat thematic mapper for lake surface temperature measurement. International Journal of Remote Sensing, 11, 2027–2041.

    Article  Google Scholar 

  • Shafique, N. A., Autrey, B. C., Fulk, F., & Cormier, S. M. (2001a). Hyperspectral narrow wave bands selection for optimizing water quality on the Great Miami River, Ohio. Journal of Spatial Hydrology, 1(1), 1–22.

    Google Scholar 

  • Shafique, N. A., Fulk, F., Autrey, B. C., & Flotemersch, J. (2001b). Hyperspectral remote sensing of water quality parameters for large rivers in the Ohio River basin. www.tucson.ars.ag.gov/icrw/proceedings.

  • She, F., Li, X., Cai, Q., & Chen, Y. (1996). Quantitative analysis on chlorophyll-a concentration in Taihu Lake using Thematic Mapper data. Journal of Lake Sciences, 8(3).

  • Sigua, G. C., Williams, M. J., Coleman, S. W., & Starks, R. (2006). Nitrogen and phosphorus status of soils and trophic state of lakes associated with forage-based beef cattle operations in Florida. Journal of Environmental Quality, 35, 240–252.

    Article  CAS  Google Scholar 

  • Sudheer, K. P., Chaubey, I., & Garg, V. (2006). Lake water quality assessment from Landsat TM Data using Neural Network: An approach to optimal band combination selection. Journal of American Water Resources Society, 42(6), 1683–1695.

    Article  Google Scholar 

  • Taasan, S. (1993). An improved in-water alogorithm for the determination of chlorophyll and suspended sediment concentration from Thematic Mapper data in coastal waters. International Journal of Remote Sensing, 14(6), 1221–1229.

    Article  Google Scholar 

  • Tripathy, N. K., & Singh, P. (1997). Mapping chlorophyll-a in Upper lake, Bhopal using IRS-1C data. http://www.gisdevelopment.net/application/environment/water/watq0002.htm.

  • Verdin, J. P. (1985). Monitoring water quality conditions in a large water reservoir with Landsat imagery. Photogrammetric Engineering & Remote Sensing, 51(3), 343–353.

    Google Scholar 

  • Yuan-Fong, S., Jun-Jih, L., Ju-Chen, H., Wei-Chun, H., Shu-Mei, H., Yi-Ting, L., et al. (2008). A multivariate model for coastal water quality mapping using satellite remote sensing images. Sensors, 8, 6321–6339.

    Article  Google Scholar 

  • Zilioli, E., & Brivio, P. A. (1997). The satellite derived optical information for the comparative assessment of lacustrine water quality. The Science of Total Environment Journal, 196, 229–245.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Sheela.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheela, A.M., Letha, J., Joseph, S. et al. Trophic state index of a lake system using IRS (P6-LISS III) satellite imagery. Environ Monit Assess 177, 575–592 (2011). https://doi.org/10.1007/s10661-010-1658-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-010-1658-2

Keywords

Navigation