Skip to main content
Log in

Lead (Pb) and arsenic (As) bioaccessibility in various soils from south China

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Seventeen soil samples with various concentrations of lead (Pb) and arsenic (As) were collected from five provinces of south China, and bioaccessibility of Pb and As in the soils were examined using a physiologically based extraction test. The results showed that the bioaccessibility ranged from 24.6% to 82.5% and 2.3% to 57.5% for Pb, 2.5% to 65.5% and 1.2% to 31.8% for As in the gastric and small intestinal phases, respectively. The effect of soil properties on the bioaccessible of Pb/As was evaluated. Path analysis showed that coefficients of determination (R 2) for the bioaccessible Pb were 0.93 in the both gastric and small intestinal phases and for the bioaccessible As were 0.98 and 0.99 in the gastric and small intestinal phases, respectively. Among all the soil characteristics, OM, DCBFe, CEC, and WAs were significant for controlling PbD, and CEC, CaCl2–Pb, and WAs were important for controlling PbI. Partitioning by path analysis also showed significant direct effects by CaCl2–Pb and WAs on AsD, and OM, CEC, CaCl2–Pb, and WAs on AsI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bao, S. D. (2000). Soil agrochemical analysis (3rd ed.). Beijing: Agricultural Press.

    Google Scholar 

  • Barth, E. F., Succop, P. A., & Evans, M. L. (2005). Evaluation of lead availability in amended soils monitored over a long-term time period. Environmental Monitoring and Assessment, 110(1–3), 257–270. doi:10.1007/s10661-005-7696-5.

    Article  CAS  Google Scholar 

  • Basta, N. T., Pantone, D. J., & Tabatabai, M. A. (1993). Path analysis of heavy metal adsorption by soil. Agronomy Journal, 85(5), 1054–1057.

    Article  CAS  Google Scholar 

  • Beak, D. G., Basta, N. T., Scheckel, K. G., & Traina, S. J. (2006a). Bioaccessibility of lead sequestered to corundum and ferrihydrite in a simulated gastrointestinal system. Journal of Environmental Quality, 35(6), 2075–2083. doi:10.2134/jeq2005.0467.

    Article  CAS  Google Scholar 

  • Beak, D. G., Basta, N. T., Scheckel, K. G., & Traina, S. J. (2006b). Bioaccessibility of arsenic(V) bound to ferrihydrite using a simulated gastrointestinal system. Environmental Science and Technology, 40(4), 1364–1370. doi:10.1021/es0516413.

    Article  CAS  Google Scholar 

  • Beak, D. G., Basta, N. T., Scheckel, K. G., & Traina, S. J. (2008). Linking solid phase speciation of Pb sequestered to birnessite to oral Pb bioaccessibility: Implications for soil remediation. Environmental Science and Technology, 42(3), 779–785. doi:10.1021/es071733n.

    Article  CAS  Google Scholar 

  • Berti, W. R., & Cunningham, S. D. (1997). In-place inactivation of Pb in Pb-contaminated soils. Environmental Science and Technology, 31(5), 1359–1364. doi:10.1021/es960577+.

    Article  CAS  Google Scholar 

  • Blank, S. C., & Schmiesing, B. H. (1988). Modeling of agricultural markets and prices using causality and path analysis. North Central Journal of Agricultural Economics, 10, 35–48.

    Article  Google Scholar 

  • Bradham, K. D., Dayton, E. A., Basta, N. T., Schroder, J., Payton, M., & Lanno, R. P. (2006). Effect of soil properties on lead bioavailability and toxicity to earthworms. Environmental Toxicology and Chemistry, 25(3), 769–775. doi:10.1897/04-552R.1.

    Article  CAS  Google Scholar 

  • Cave, M. R., Wragg, J., Palumbo, B., & Klinck, B. A. (2003). Measurement of the bioaccessibility of arsenic in UK soils. P5–062/TR1, Environment Agency.

  • Codling, E. E. (2007). Long-term effects of lime, phosphorus, and iron amendments on water-extractable arsenic, lead, and bioaccessible lead from contaminated orchard soils. Soil Science, 172(10), 811–819. doi:10.1097/SS.0b013e3180dc9aa3.

    Article  CAS  Google Scholar 

  • Dayton, E. A., Basta, N. T., Payton, M. E., Bradham, K. D., Schroder, J. L., & Lanno, R. P. (2006). Evaluating the contribution of soil properties to modifying phytoavalability and phytotoxicity. Environmental Toxicology and Chemistry, 25(3), 719–725. doi:10.1897/05-307R.1.

    Article  CAS  Google Scholar 

  • Drahota, P., & Filippi, M. (2009). Secondary arsenic minerals in the environment: A review. Environment International, 35, 1243–1255. doi:10.1016/j.envint.2009.07.004.

    Article  CAS  Google Scholar 

  • Dudka, S., & Miller, W. P. (1999). Permissible concentration of arsenic and lead in soils based on risk assessment. Water, Air and Soil Pollution, 11(1–4), 3127–3132. doi:10.1023/A:1005028905396.

    Google Scholar 

  • Filgueiras, A. V., Lavilla, I., & Bendicho, C. (2002). Chemical sequential extraction for metal partitioning in environmental solid samples. Journal of Environmental Monitoring, 4, 823–857. doi:10.1039/b207574c.

    Article  CAS  Google Scholar 

  • Girouard, E., & Zagury, G. J. (2009). Arsenic bioaccessibility in CCA-contaminated soils: Influence of soil properties, arsenic fractionation, and particle-size fraction. Science of The Total Environment, 407(8), 2576–2785. doi:10.1016/j.scitotenv.2008.12.019.

    Article  CAS  Google Scholar 

  • Hendershot, W. H., & Duquette, M. A. (1986). Simple barium chloride method for determining cation exchange capacity and exchangeable cations. Soil Science Society of America Journal, 50(3), 605–608.

    Article  Google Scholar 

  • Ige, D. V., Akinremi, O. O., & Flaten, D. N. (2007). Direct and indirect effects of soil properties on phosphorus retention capacity. Soil Science Society of America, 71(1), 95–100. doi:10.2136/sssaj2005.0324.

    Article  CAS  Google Scholar 

  • Kim, J. Y., Kim, K. W., Lee, J. U., Lee, J. S., & Cook, J. (2002). Assessment of As and heavy metal concentration in the vicinity of Duckum Au–Ag mine, Korea. Environmental Geochemistry and Health, 24(3), 215–227. doi:10.1023/A:1016096017050.

    Article  Google Scholar 

  • Ljung, K., Selinus, O., Otabbong, E., & Berglund, M. (2006). Metal and arsenic distribution in soil particle sizes relevant to soil ingestion by children. Applied Geochemistry, 21(9), 1613–1624. doi:10.1016/j.apgeochem.2006.05.005.

    Article  CAS  Google Scholar 

  • Lu, R. K. (2000). Soil and agricultzural analysis methods. Beijing: China Agricultural Press.

    Google Scholar 

  • Mercier, G., Duchesne, J., & Carles-Gibergues, A. (2002). A simple and fast screening test to detect soils polluted by lead. Environmental Pollution, 118(3), 285–296. doi:10.1016/S0269-7491(01)00307-4.

    Article  CAS  Google Scholar 

  • Mohapatra, D., Mishra, D., Rout, M., & Chaudhury, G. R. (2007). Adsorption kinetics of natural dissolved organic matter and its impact on arsenic(V) leachability from arsenic-loaded ferrihydrite and Al-ferrihydrite. Journal of Environmental Science and Health A, 42(1), 81–88. doi:10.1080/10934520601015792.

    Article  CAS  Google Scholar 

  • Moseley, R. A., Barnett, M. O., Stewart, M. A., Mehlhorn, T. L., Jardine, P. M., Ginder-Vogel, M., et al. (2008). Decreasing lead bioaccessibility in industrial and firing-range soils with phosphate-based amendments. Journal of Environmental Quality, 37(6), 2116–2124. doi:10.2134/jeq2007.0426.

    Article  CAS  Google Scholar 

  • Navarro, M. C., Pérez-Sirvent, C., Martínez-Sánchez, M. J., Vidal, J., & Marimón, J. (2006). Lead, cadmium and arsenic bioavailability in the abandoned mine site of Cabezo Rajao (Murcia, Spain). Chemosphere, 63(3), 484–489. doi:10.1016/j.chemosphere.2005.08.017.

    Article  CAS  Google Scholar 

  • Newton, K., Amarasiriwardena, D., & Xing, B. (2006). Distribution of soil arsenic species, lead and arsenic bound to humic acid molar mass fractions in a contaminated apple orchard. Environmental Pollution, 143(2), 197–205. doi:10.1016/j.envpol.2005.12.001.

    Article  CAS  Google Scholar 

  • Olson, R. V., & Ellis, R., Jr. (1982). Iron. In: Page, A. L., Miller, R. H., & Keeney, D. R. (Eds.), ASA-SSSA methods of soil analysis, part 2. Chemical and microbiological properties-agronomy monograph (no. 9, 2nd ed., chapter 17).

  • Oomen, A. G., Rompelberg, C. J. M., Bruil, M. A., Dobbe, C. J. G., Pereboom, D. P. K. H., & Sips, A. J. A. M. (2003). Development of an in vitro digestion model for estimating the bioaccessibility of soil contaminants. Archives of Environmental Contamination and Toxicology, 44(3), 281–287. doi:10.1007/s00244-002-1278-0.

    Article  CAS  Google Scholar 

  • O’Reilly, S. E., & Hochella, M. F. (2003). Lead sorption efficiencies of natural and synthetic Mn and Fe-oxides. Geochimica et Cosmochimica Acta, 67(23), 4471–4487. doi:10.1016/S0016-7037(03)00413-7.

    Article  Google Scholar 

  • Pinheiro, J. P., Mota, A. M., & van Leeuwen, H. P. (1999). On lability of chemically heterogeneous systems: Complexes between trace metals and humic matter. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 151(1–2), 181–187.

    Article  CAS  Google Scholar 

  • Pouschat, P., & Zagury, G. J. (2006). In vitro gastrointestinal bioavailability of arsenic in soils collected near CCA-treated utility poles. Environmental Science and Technology, 40(13), 4317–4323. doi:10.1021/es0604156.

    Article  CAS  Google Scholar 

  • Rodriguez, R. R., Basta, N. T., Casteel, S. W., Armstrong, F. P., & Ward, D. C. (2003). Chemical extraction methods to assess bioavailable arsenic in soil and solid media. Journal of Environmental Quality, 32(3), 876–884.

    Article  CAS  Google Scholar 

  • Rodriguez, R., Basta, N. T., Casteel, S. W., & Pacel, W. (1999). An in vitro gastrointestinal method to estimate bioavailable arsenic in contaminated soils and solid media. Environmental Science and Technology, 33(4), 642–649. doi:10.1021/es980631h.

    Article  CAS  Google Scholar 

  • Romero, F. M., Villalobos, M., Aguirre, R., & Gutiérrez, M. E. (2008). Solid-phase control on lead bioaccessibility in smelter-impacted soils. Archives of Environmental Contamination and Toxicology, 55(4), 566–575. doi:10.1007/s00244-008-9152-3.

    Article  CAS  Google Scholar 

  • Ruby, M. V., Davis, A., Link, T. E., Schoof, R., Chaney, R. L., Freeman, G. B., et al. (1993). Development of an in vitro screening test to evaluate the in vivo bioaccessibility of ingested mine-waste lead. Environmental Science and Technology, 27(13), 2870–2877. doi:10.1021/es00049a030.

    Article  CAS  Google Scholar 

  • Ruby, M. V., Davis, A., Schoof, R., Eberle, S., & Sellstone, C. M. (1996). Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environmental Science and Technology, 30(2), 422–430. doi:10.1021/es950057z.

    Article  CAS  Google Scholar 

  • Ruby, M. V., Schoof, R., Brattin, W., Goldade, M., Post, G., Harnois, M., et al. (1999). Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment. Environmental Science and Technology, 33(21), 3697–3705. doi:10.1021/es990479z.

    Article  CAS  Google Scholar 

  • Sarkar, D., Quazi, S., Makris, K. C., Datta, R., & Khairom, A. (2007). Arsenic bioaccessibility in a soil amended with drinking-water treatment residuals in the presence of phosphorus fertilizer. Archives of Environmental Contamination and Toxicology, 53(3), 329–336. doi:10.1007/s00244-006-0170-8.

    Article  CAS  Google Scholar 

  • Schroder, J. L., Basta, N. T., Casteel, S. W., Evans, T. J., Payton, M. E., & Si, J. (2004). Validation of the in vitro gastrointestinal (IVG) method to estimate relative bioavailable lead in contaminated soils. Journal of Environmental Quality, 33(2), 513–521.

    Article  CAS  Google Scholar 

  • Shiowatana, J., McLaren, R. G., Chanmekha, N., & Samphao, A. (2001). Fractionation of arsenic in soil by a continuous-flow sequential extraction method. Journal of Environmental Quality, 30(6), 1940–1949.

    Article  CAS  Google Scholar 

  • Tang, X. Y., Cui, Y. S., Duan, J., & Tang, L. (2008). Pilot study of temporal variations in lead bioaccessibility and chemical fractionation in some Chinese soils. Journal of Hazardous Materials, 160(1), 29–36. doi:10.1016/j.jhazmat.2008.02.076.

    Article  CAS  Google Scholar 

  • Tang, X. Y., Zhu, Y. G., Cui, Y. S., Duan, J., & Tang, L. L. (2006). The effect of ageing on the bioaccessibility and fractionation of cadmium in some typical soils of China. Environment International, 32(5), 682–689. doi:10.1016/j.envint.2006.03.003.

    Article  Google Scholar 

  • Tang, X. Y., Zhu, Y. G., Shan, X. Q., McLaren, R., & Duan, J. (2007). The ageing effect on bioaccessibility and fractionation of arsenic in soils from China. Chemosphere, 66(7), 1183–1190. doi:10.1016/j.chemosphere.2006.07.096.

    Article  CAS  Google Scholar 

  • US Environmental Protection Agency (US EPA) (2002). Child-specific exposure factors handbook, national center for environmental assessment. Washington, DC; EPA/600/P-00/002B. National Information Service, Springfield, VA; PB2003–101678.

  • Van Wijnen, J. H., Clausing, P., & Brunekreef, B. (1990). Estimated soil ingestion by children. Environmental Research, 51(2), 147–162. doi:10.1016/S0013-9351(05)80085-4.

    Article  Google Scholar 

  • Villalobos, M., Bargar, J., & Sposito, G. (2005). Mechanisms of Pb(II) sorption on a biogenic manganese oxide. Environmental Science and Technology, 399(2), 569–576. doi:10.1021/es049434a.

    Article  Google Scholar 

  • Williams, W. A., Jones, M. B., & Demment, M. W. (1990). A concise table for path analysis. Agronomy Journal, 82, 1022–1024.

    Article  Google Scholar 

  • Yang, J. K., Barnett, M. O., Jardine, P. M., Basta, N. T., & Casteel, S. W. (2002). Adsorption, sequestration, and bioaccessibility of As(V) in soils. Environmental Science and Technology, 36(21), 4562–4569. doi:10.1021/es011507s.

    Article  CAS  Google Scholar 

  • Yang, J. K., Barnett, M. O., Jardine, P. M., & Brooks, S. C. (2003a). Factors controlling the bioaccessibility of arsenic(V) and lead(II) in soil. Soil and Sediment Contamination, 12(2), 165–179. doi:10.1080/713610968.

    Article  CAS  Google Scholar 

  • Yang, J. K., Barnett, M. O., Jardine, P. M., & Brooks, S. C. (2003b). Factors controlling the bioaccessibility of arsenic(V) and lead(II) in soil. Soil and Sediment Contamination, 12, 165–179. doi:10.1080/713610968.

    Article  CAS  Google Scholar 

  • Zhang, H., Schroder, J. L., Fuhrman, J. K., Basta, N. T., Storm, D. E., & Payton, M. E. (2005). Path and multiple regression analyses of phosphorus sorption capacity as affected by soil properties. Soil Science Society of America Journal, 69(1), 96–106.

    CAS  Google Scholar 

  • Zhu, Y. G., Sun, G. X., Lei, M., Teng, M., Liu, Y. X., Chen, N. C., et al. (2008). High percentage inorganic arsenic content of mining impacted and nonimpacted Chinese rice. Environmental Science and Technology, 42(13), 5008–5013. doi:10.1021/es8001103.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanshan Cui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, Y., Chen, X. Lead (Pb) and arsenic (As) bioaccessibility in various soils from south China. Environ Monit Assess 177, 481–492 (2011). https://doi.org/10.1007/s10661-010-1649-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-010-1649-3

Keywords

Navigation