Skip to main content

Advertisement

Log in

Monitoring and identification of spatiotemporal landscape changes in multiple remote sensing images by using a stratified conditional Latin hypercube sampling approach and geostatistical simulation

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This study develops a stratified conditional Latin hypercube sampling (scLHS) approach for multiple, remotely sensed, normalized difference vegetation index (NDVI) images. The objective is to sample, monitor, and delineate spatiotemporal landscape changes, including spatial heterogeneity and variability, in a given area. The scLHS approach, which is based on the variance quadtree technique (VQT) and the conditional Latin hypercube sampling (cLHS) method, selects samples in order to delineate landscape changes from multiple NDVI images. The images are then mapped for calibration and validation by using sequential Gaussian simulation (SGS) with the scLHS selected samples. Spatial statistical results indicate that in terms of their statistical distribution, spatial distribution, and spatial variation, the statistics and variograms of the scLHS samples resemble those of multiple NDVI images more closely than those of cLHS and VQT samples. Moreover, the accuracy of simulated NDVI images based on SGS with scLHS samples is significantly better than that of simulated NDVI images based on SGS with cLHS samples and VQT samples, respectively. However, the proposed approach efficiently monitors the spatial characteristics of landscape changes, including the statistics, spatial variability, and heterogeneity of NDVI images. In addition, SGS with the scLHS samples effectively reproduces spatial patterns and landscape changes in multiple NDVI images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chu, H. J., Lin, Y. P., Huang, Y. L., & Wang, Y. C. (2009). Detecting the land-cover changes induced by large-physical disturbances using landscape metrics, spatial sampling, simulation and spatial analysis. Sensors, 9, 6670–6700.

    Article  Google Scholar 

  • Cohen, W. B., & Goward, S. N. (2004). Landsat’s role in ecological applications of remote sensing. Bioscience, 54(6), 535–545.

    Article  Google Scholar 

  • Cressie (1993). Statistics for spatial data. New York: Wiley.

    Google Scholar 

  • Csillag, F., & Kabos, S. (1996). Hierarchical decomposition of variance with applications in environmental mapping based on satellite images. Mathematical Geology, 28, 385–405.

    Article  Google Scholar 

  • DeMets, C., Gordon, R. G., Argus, D. F., & Stein, S. (1990). Current plate motions. Geophysical Journal International, 104, 425–478.

    Article  Google Scholar 

  • Deutsch, C. V., & Journel, A. G. (1992). GSLIB. Geostatistical software library and user’s guide (pp. 340). New York: Oxford University Press.

    Google Scholar 

  • Edwards, G., & Fortin, M. J. (2001). Delineation and analysis of vegetation boundaries. In: C. T. Hunsaker, M. A. Goodchild, A. Friedl, & T. J. Case (Eds.), Spatial uncertainty in ecology: Implications for remote sensing and GIS application (pp. 158–174). New York: Springer.

    Google Scholar 

  • Fredericks, A. K., & Newman, K. B. (1998). A comparison of the sequential Gaussian and Markov-Bayes simulation methods for small samples. Mathematical Geology, 30(8), 1011–1032.

    Article  Google Scholar 

  • Gallego, F. J. (2005). Stratified sampling of satellite images with a systematic grid of points. Journal of Photogrammetry and Remote Sensing, 59, 369–376.

    Article  Google Scholar 

  • Gamma Design Software (2004). GS+: Geostatistics for the environmental sciences. Version 5.0. Plainwell, MI: Gamma Design Software.

    Google Scholar 

  • Garrigues, S., Allard, D., Baret, F., & Morisette, J. (2008). Multivariate quantification of landscape spatial heterogeneity using variogram models. Remote Sensing of Environment, 112, 216–230.

    Article  Google Scholar 

  • Hayes, D. J., & Cohen, W. B. (2007). Spatial, spectral and temporal patterns of tropical forest cover change as observed with multiple scales of optical satellite data. Remote Sensing of Environment, 106, 1–16.

    Article  Google Scholar 

  • Hristopulos, D. T., & Elogne, S. N. (2009). Computationally efficient spatial interpolators based on Spartan spatial random fields. IEEE Transactions on signal processing, 57(9), 3475–3487.

    Article  Google Scholar 

  • Iman, R. L., & Conover, W. J. (1980). Small sample sensitivity analysis techniques for computer models, with an application to risk assessment. Communications in Statistics - Theory and Methods, A9, 1749–1874.

    Article  Google Scholar 

  • Lewis-Beck, M. S. (1994). Factor analysis and related techniques. Jurong, Singapore: SAGE Inc.

    Google Scholar 

  • Lin, Y. P., Teng, T. P., & Chang, T. K. (2002). Multivariate analysis of soil heavy metal pollution and landscape pattern in Changhua county in Taiwan. Landscape and Urban Planning, 62, 19–35.

    Article  Google Scholar 

  • Lin, Y. P., Chang, T. K., Wu, C. F., Chiang, T. C., & Lin, S. H. (2006). Assessing impacts of typhoons and the ChiChi earthquake on Chenyuland watershed landscape patterns in Central Taiwan using landscape metrics. Environmental Management, 38, 108–125.

    Article  Google Scholar 

  • Lin, Y. B., Lin, Y. P., & Deng, D. P. (2008a). Integrating remote-sensing data with directional two-dimension wavelet analysis and open geospatial techniques for effective disaster monitoring and management. Sensors, 8, 1070–1089.

    Article  Google Scholar 

  • Lin, Y. P., Yen, M. H., Deng, D. P., & Wang, Y. C. (2008b). Geostatistical approaches and optimal additional sampling schemes for spatial patterns and future samplings of bird diversity. Global Ecology and Biogeography, 17, 175–188.

    Article  Google Scholar 

  • Lin, Y. P., Chu, H. J., Wang, C. L., Yu, H. H., & Wang, Y. C. (2009). Remote-sensing data with the conditional Latin hypercube sampling and geostatistical approach to delineate landscape changes induced by large chronological physical disturbances. Sensors, 9, 148–174.

    Article  Google Scholar 

  • McBratney, A. B., Whelan, B. M., Walvoort, D. J. J., & Minasny, B. (1999). A purposive sampling scheme for precision agriculture. In: J. J. Stafford (Ed.), Precision agriculture’99 (pp. 101–110). Sheffield: Sheffield Academic Press.

    Google Scholar 

  • McKay, M. D., Beckman, R. J., & Conover, W. J. (1979). A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 21, 239–245.

    Article  Google Scholar 

  • Minasny, B., & McBratney, A. B. (2006). A conditioned Latin hypercube method for sampling in the presence of ancillary information. Computers & Geosciences, 32, 1378–1388.

    Article  Google Scholar 

  • Minasny, B., & McBratney, A. B. (2007). The variance quadtree algorithm: Use for spatial sampling design. Computers & Geosciences, 33, 383–392.

    Article  Google Scholar 

  • Minasny, B., McBratney, A. B., & Walvoort, D. J. J. (2007). The variance quadtree algorithm: Use for spatial sampling design. Computers & Geosciences, 33, 383–392.

    Article  Google Scholar 

  • Petit, C., Scudder, T., & Lambin, E. (2001). Quantifying processes of land-cover change by remote sensing: Resettlement and rapid land-cover changes in south-eastern Zambia. International Journal of Remote Sensing, 22(17), 3435–3456.

    Article  Google Scholar 

  • Poveda, J., & Gould, M. (2005). Multidimensional binary indexing for neighbourhood calculations in spatial partition trees. Computers & Geosciences, 31, 87–97.

    Article  Google Scholar 

  • Samet, H. (1990). The design and analysis of spatial data structures (pp. 493). Reading: Addision Wesley Publishing Company, Inc.

    Google Scholar 

  • Sellers, P. J. (1997). Modeling the exchange of energy, water, and carbon between continents and atmosphere. Science, 275, 602–609.

    Article  Google Scholar 

  • Tarnavsky, E., Garrigues, S., & Brown, M. E. (2008). Multiscale geostatistical analysis of AVHRR, SPOT-VGT, and MODIS global NDVI products. Remote Sensing of Environment, 112, 535–549.

    Article  Google Scholar 

  • Thompson, S. K. (1992). Sampling. New York: Wiley Interscience.

    Google Scholar 

  • Turner, M. G. (1987). Spatial simulation of landscape changes in Georgia: A comparison of 3 transition models. Landscape Ecology, 1, 29–36.

    Article  Google Scholar 

  • Walker, P. A., & Grant, I. W. (1986). Quadtree: A FORTRAN program to extract the quadtree structure of a raster format multicolored image. Computers & Geosciences, 12, 401–409.

    Article  Google Scholar 

  • Walsh, S. J., Crawford, T. W., Welsh, W. F., & Crews-Meyer, K. A. (2001). A multiscale analysis of LULC and NDVI variation in Nang Rong district, northeast Thailand. Agriculture, Ecosystems & Environment, 85, 47–61.

    Article  Google Scholar 

  • Xiao, X., Gertner, G., Wang, G., & Anderson, A. B. (2004). Optimal sampling scheme for estimation landscape mapping of vegetation cover. Landscape Ecology, 20, 375–387.

    Article  Google Scholar 

  • Zhao, Y. C., Xu, X. H., Huang, B., Sun, W. X., Shao, X. X., Shi, X. Z., et al. (2007). Using robust kriging and sequential Gaussian simulation to delineate the copper- and lead-contaminated areas of a rapidly industrialized city in Yangtze River Delta, China. Environmental Geology, 52, 1423–1433.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Pin Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, YP., Chu, HJ., Huang, YL. et al. Monitoring and identification of spatiotemporal landscape changes in multiple remote sensing images by using a stratified conditional Latin hypercube sampling approach and geostatistical simulation. Environ Monit Assess 177, 353–373 (2011). https://doi.org/10.1007/s10661-010-1639-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-010-1639-5

Keywords

Navigation