Environmental Monitoring and Assessment

, Volume 177, Issue 1–4, pp 289–300 | Cite as

Use of three bivalve species for biomonitoring a polluted estuarine environment

  • Juan Fernández-Tajes
  • Fernanda Flórez
  • Sandra Pereira
  • Tamara Rábade
  • Blanca Laffon
  • Josefina Méndez
Article

Abstract

Estuaries are marine areas at great contamination risk due to their hydrodynamic features. PAH are wide and ubiquitous contaminants with a high presence in these marine environments. Chemical analysis of sediments can provide information, although it does not give a direct measure of the toxicological effect of such contaminants in the biota. Samples of Venerupis pullastra, Cerastoderma edule, and Mytilus galloprovincialis were collected from two locations in Corcubión estuary (Norhwest of Spain). The level of PAH in sediment and biota, and its possible origin were assessed. A moderate level of contamination was observed with a predominance of PAH of a pyrogenic origin. Genotoxic damage, measured as single-strand DNA breaks with the comet assay, was evaluated in gill tissue and in hemolymph. The values of DNA damage obtained showed a higher sensitivity of clams and cockles to the pollution load level. These differences among species make us suggest the use of some other species coupled with mussels as an optimal tool for biomonitoring estuarine environments.

Keywords

Estuary Comet assay Bivalve Polycyclic aromatic hydrocarbons Marine pollution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Accomando, R., Viarengo, A., Bordone, R., Taningher, M., Canesi, L., & Orunesu, M. (1991). A rapid method for detecting DNA strand breaks in Mytilus galloprovincialis Lam. induced by genotoxic xenobiotic chemicals. International Journal of Biochemestry, 23, 227–229.CrossRefGoogle Scholar
  2. Akcha, F., Tanguy, A., Ledaym, G., Pelluhet, L., Budzinski, H., & Chiffoleau, J. F. (2004). Measurement of DNA single-strand breaks in gill and hemolymph cells of mussels, Mytilus sp., collected on the French Atlantic Coast. Marine Environmental Research, 58, 735–756.CrossRefGoogle Scholar
  3. Baumard, P., Budzinski, H., Garrigues, P., Narbone, J. F., Burgeot, T., Michel, X., et al. (1999). Polycylic Aromatic Hydrocarbon (PAH) burden of mussels (Mytilus sp.) in different marine environments in relation with sediment PAH contamination, and bioavailability. Marine Environmental Research, 47, 415–439.CrossRefGoogle Scholar
  4. Bernstein, C., & Bernstein, H. (1991). Ageing, sex and DNA repair. New York: Academic Press.Google Scholar
  5. Bihari, N., Batel, R., & Zahn, R. K. (1992). Fractioning of DNA from marine invertebrate (Maja crispate, Mytilus galloprovincialis) haemolymph by alkaline elution. Comparative Biochemestry and Physiology part B, 102, 419–424.CrossRefGoogle Scholar
  6. Bihari, N., Fafandel, M., Hamer, B., & Kralj-Bilen, B. (2006). PAH content, toxicity and genotoxicity of coastal marine sediments from the Rovinj area, Northern Adriatic, Croatia. Science of the Total Environment, 366, 602–611.CrossRefGoogle Scholar
  7. Bikham, J. W., Sandhu, S., Hebert, P. D. N., Chikhi, L., & Athwal, R. (2000). Effects of chemical contaminants on genetic diversity in natural populations: Implications for biomonitoring and ecotoxicology. Mutation Research, 463, 33–51.CrossRefGoogle Scholar
  8. Binelli, A., & Provini, A. (2003). POPs in edible clams from different italian and european markets and possible human health risk. Marine Pollution Bulletin, 46, 879–886.CrossRefGoogle Scholar
  9. Budzinski, H., Jones, I., Bellocq, J., Piérardm, C., & Garrigues, P. (1997). Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary. Marine Chemistry, 58, 85–97.CrossRefGoogle Scholar
  10. Chase, M. E., Jones, S. H., Hennigar, P., Sowles, J., Harding, G. C. H., Freeman, K., et al. (2001). Gulfwatch: Monitoring spatial and temporal patterns of trace metal and organic contaminants in the gulf of Maine (1991–1997) with the blue mussel, Mytilus edulis L. Marine Pollution Bulletin, 42, 490–504.CrossRefGoogle Scholar
  11. Cheng, G., White, P. A. (2004). The mutagenic hazards of aquatic sediments: a review. Mutation Research, 567, 151–225.CrossRefGoogle Scholar
  12. Cheung, V. V., Depledge, M. H., & Jha, A. N. (2006). An evaluation of the relative sensitivity of two marine bivalve mollusc species using the comet assay. Marine Environmental Research, 62, S301–S305.CrossRefGoogle Scholar
  13. Chiou, C., McGroddy, S., & Kile, D. (1998). Partition characteristics of polycyclic aromatic hydrocarbons on soils and sediments. Environmental Science and Technology, 32, 264–269.CrossRefGoogle Scholar
  14. Colombo, J., Cappelletti, N., Lasci, J., Migoya, M., Speranza, E., & Skorupka, C. (2006). Sources, vertical fluxes, and equivalent toxicity of aromatic hydrocarbons in coastal sediments of the río de la Plata estuary, Argentina. Environental and Science Technology, 40, 734–740.CrossRefGoogle Scholar
  15. Coughlan, B. M., Hartl, M. G. J., O’Reilly, S. J., Sheehan, D., Morthersill, C., van Pelt, F., et al. (2002). Detecting genotoxicity using the comet assay following chronic exposure of manila clam Tapes semidecussatus to polluted estuarine sediments. Marine Pollution Bulletin, 44, 1359–1365.CrossRefGoogle Scholar
  16. Downs, C. A., Shigenaka, G., Fauth, J. E., Robinson, C. E., & Huang, A. (2002). Cellular physiological assessment of bivalves after chronic exposure to spilled Exxon Valdez crude oil using a novel molecular diagnostic biotechnology. Environmental Science and Technology, 36, 2987–2993.CrossRefGoogle Scholar
  17. Farmer, P. B. (2003). Molecular epidemiology studies of carcinogenic environmental pollutants. Effects of Polycyclic Aromatic Hydrocarbons (PAHs) in environmental pollution on exogenous and oxidative DNA damages. Mutation Research-Reviews in Mutation Research, 544, 397–402.Google Scholar
  18. Frenzilli, G., Nigro, M., Scarcelli, V., Gorbi, S., & Regoli, F. (2001). DNA integrity and total oxyradical scavenging capacity in the mediterranean mussel, Mytilus galloprovincialis: A field study in a highly eutrophicated coastal lagoon. Aquatic Toxicology, 53, 19–32.CrossRefGoogle Scholar
  19. Frenzilli, G., Nigro, M., & Lyons, B. P. (2009). The comet assay for the evaluation of genotoxic impact in aquatic environments. Mutation Research/Reviews in Mutation Research, 681, 80–92.CrossRefGoogle Scholar
  20. Gschwend, P. M., & Hites, R. A. (1981). Fluxes of polycyclic aromatic hydrocarbons to marine and lacustrine sediments in the northeastern United States. Geochimica et Cosmochimica Acta, 45, 2359–2367.CrossRefGoogle Scholar
  21. Gustafson, K. E., & Dickut, R. M. (1997). Particle/gas concentrations and distributions of PAHs in the atmosphere of Southerns Chesapeake Bay-Response. Environmental Science and Technology, 31, 3738–3739.CrossRefGoogle Scholar
  22. Karacık, B., Okay, O. S., Henkelmann, B., Bernhöft, S., & Schramm, K. (2009). Polycyclic aromatic hydrocarbons and effects on marine organisms in the Istanbul strait. Environmental International, 35, 599–606.CrossRefGoogle Scholar
  23. Khadim, M. (1990). Methodologies for monitoring the genetic effects of mutagens and carcinogens accumulated in the body of marine mussels. Reviews in Aquatic Science, 2, 83–107.Google Scholar
  24. Laffon, B., Rábade, T., Pásaro, E., & Méndez, J. (2006). Monitoring of the impact of Prestige oil spill on Mytilus galloprovincialis from galician coast. Environment International, 32, 342–348.CrossRefGoogle Scholar
  25. Large, A. T., Shaw, J. P., Peters, L. D., McIntosh, A. D., Webster, L., Mally, A., et al. (2002). Different levels of mussel (Mytilus edulis) DNA strand breaks following chronic field and acute laboratory exposure to polycyclic aromatic hydrocarbons. Marine Environmental Research, 54, 493–497.CrossRefGoogle Scholar
  26. Lemiere, S., Cossu-Leguille, C., Bispo, A., Jourdain, M.-J., Lanhers, M.-C., Burnel, D., et al. (2005). DNA damage measured by the single-cell electrophoresis (Comet) assay in mammals fed with mussels contaminated by the “Erika” oil-spill. Mutation Research, 581, 11–21.Google Scholar
  27. Liepelt, A., Karbe, L., & Westendorf, J. (1995). Induction of DNA strand breaks in rainbow trout Oncorhynchus mykiss under hypoxic and hyperoxic conditions. Aquatic Toxicology, 33, 177–181.CrossRefGoogle Scholar
  28. Liu, J. H., & Kueh, C. S. W. (2005). Biomonitoring of heavy metals and trace organics using the intertidal mussel Perna viridis in Hong Kong coastal waters. Marine Pollution Bulletin, 51, 857–875.CrossRefGoogle Scholar
  29. Livingstone, D. R. (1993). Biotechnology and pollution monitoring: use of molecular biomarkers in the aquatic environment. Journal of Chemical Technology and Biotechnology, 57, 195–211.Google Scholar
  30. Mersch, J., Beauvais, M., & Nagel, P. (1996). Induction of micronuclei in hemocytes and gill cells of zebra mussels, Dreissena polymorpha, exposed to clastogens. Mutation Research-Genetic Toxicology, 371, 47–55.CrossRefGoogle Scholar
  31. Mitchelmore, C. L., & Chipman, J. K. (1998). Detection of DNA strand breaks in brown trout (Salmo trutta) hepatocytes and blood cells using the single cell gel electrophoresis (comet) assay. Aquatic toxicology, 41, 161–182.CrossRefGoogle Scholar
  32. Monserrat, J. M., Martínez, P. E., Geracitano, L. A., Lund Amado, L., Martinez Gaspar Martins, C., Lopes Leães Pinho, G., et al. (2007). Pollution biomarkers in estuarine animals: Critical review and new perspectives. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 146, 221–34.CrossRefGoogle Scholar
  33. Nacci, D., Nelson, S., Nelson, W., & Jackim, E. (1992). Application of the DNA alkaline unwiding assay to detect DNA strand breaks in marine bivalves. Marine Environmental Research, 33, 83–100.CrossRefGoogle Scholar
  34. Namiesnik, J., Moncheva, S., Park, Y.-S., Ham, K.-S., Heo, B.-G., Tashma, Z., et al. (2008). Concentration of bioactive compounds in mussels Mytilus galloprovincialis as an indicator of pollution. Chemosphere, 73, 938–944.CrossRefGoogle Scholar
  35. Neff, J. (1979). Polycyclic aromatic hydrocarbons in the aquatic environment: Sources, fates and biological effects. Essex: Applied Science Publishers Ltd.Google Scholar
  36. Nieto, O., Aboigor, J., Bujan, R., N’Diaye, M., Grana, J., Saco-Alvarez, L., et al. (2006). Temporal variation in the levels of polycyclic aromatic hydrocarbons (PAHs) off the Galician Coast after the ‘Prestige’ oil spill. Marine Ecology Progress Series, 328, 41–49.CrossRefGoogle Scholar
  37. Pérez-Cadahía, B., Laffon, B., Pásaro, E., & Méndez, J. (2004). Evaluation of PAH bioaccumulation and DNA damage in mussels (Mytilus galloprovincialis) exposed to spilled prestige crude oil. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 138, 453–460.CrossRefGoogle Scholar
  38. Perugini, M., Visciano, P., Manera, M., Turno, G., Lucisano, A., & Amorena, M. (2007). polycyclic aromatic hydrocarbons in marine organisms from the gulf of Naples, Tyrrhenian sea. Journal of Agricultural and Food Chemistry, 55, 2049–2054.CrossRefGoogle Scholar
  39. Porte, C., Biosca, X., Pastor, D., Sole, M., & Albalges, J. (2000). The Aegean Sea oil spill. 2. Temporal study of the hydrocarbons accumulation in bivalves. Environmental Science and Technology, 34, 5067–5075.CrossRefGoogle Scholar
  40. Rank, J. (2009). Intersex in Littorina littorea and DNA damage in Mytilus edulis as indicators of harbour pollution. Ecotoxicology and Environmental Safety, 72, 1271–1277.CrossRefGoogle Scholar
  41. Rank, J., & Jensen, K. (2003). Comet assay on gill cells and hemocytes from the blue mussel Mytilus edulis. Ecotoxicology and Environmental Safety, 54, 323–329.CrossRefGoogle Scholar
  42. Rank, J., Jensen, K., & Jespersen, P. H. (2005). Monitoring DNA damage in indigenous blue mussels (Mytilus edulis) sampled from coastal sites in Denmark. Mutation Research-Genetic Toxicology and Environmental Mutageneis, 585, 33–42.CrossRefGoogle Scholar
  43. Regoli, F. (2000). Total Oxyradical Scavenging Capacity (TOSC) in polluted and translocated mussels: A predictive biomarker of oxidative stress. Aquatic Toxicology, 50, 351–361.CrossRefGoogle Scholar
  44. Rocher, B., Le Goff, J., Peluhet, L., Briand, M., Manduzio, H., Gallois, J., et al. (2006). Genotoxicant accumulation and cellular defence activation in bivalves chronically exposed to waterbone contaminats from the Seine River. Aquatic Toxicology, 79, 65–77.CrossRefGoogle Scholar
  45. Serafim, M. A., & Bebianno, M. J. (2001). Variation of metallothionein and metal concentrations in the digestive gland of the clam Ruditapes decussatus: Sex and seasonal effects. Environmental Toxicology and Chemistry, 20, 544–552.Google Scholar
  46. Shugart, L. (1988). An alkaline unwinding assay for the detection of DNA damage in aquatic organisms. Marine Environmental Research, 24, 321–325.CrossRefGoogle Scholar
  47. Sicre, M. A., Marty, J. C., Saliot, A., Aparicio, X., Grimalt, J., & Albaiges, J. (1987). Aliphatic and aromatic hydrocarbons in different sized aerosols over the Mediterranean sea: Occurrence and origin. Atmospheric Environment, 21, 2247–2259.CrossRefGoogle Scholar
  48. Singh, N. P., McCoy, M. T., Tice, R. R., Schneider, E.L. (1988). A simple technique for quantification of low levels of DNA damage in individual cells. Experimental and Cell Research, 175, 184–191.CrossRefGoogle Scholar
  49. Soclo, H. H., Garrigues, P., & Ewald, M. (2000). Origin of Polycyclic Aromatic Hydrocarbons (PAHs) in coastal marine sediments: Case studies in Cotonou (Benin) and Aquitaine (France) areas. Marine Pollution Bulletin, 40, 387–396.CrossRefGoogle Scholar
  50. Solé, M., Porte, C., Pastor, D., & Albaigés, J. (1994). Long-term trends of polychlorinated biphenyls and organochlorinated pesticides in mussels from the western Mediterranean coast. Chemosphere, 28, 897–903.CrossRefGoogle Scholar
  51. Speit, G., & Hartmann, A. (1995). The contribution of excision repair to the DNA effects seen in the alkaline single cell gel test (comet assay). Mutagenesis, 10, 555–560.CrossRefGoogle Scholar
  52. Steinert, S. A., Streib-Montee, R., Leather, J. M., & Chadwick, D. B. (1998). DNA damage in mussels at sites in San Diego Bay. Mutation Research: Fundamental and Molecular Mechanisms of Mutagenesis, 399, 65–85.CrossRefGoogle Scholar
  53. Taban, I. C., Bechmann, R. K., Torgrimsen, S., Baussant, T., & Sanni, S. (2004). Detection of DNA damage in mussels and sea urchins exposed to crude oil using comet assay. Marine Environmental Research, 58, 701–705.CrossRefGoogle Scholar
  54. Telli-Karakoç, F., Tolun, L., Henkelmann, B., Klimm, C., Okay, O., & Schramm, K. (2002). Polycyclic Aromatic Hydrocarbons (PAHs) and Polychlorinated Biphenyls (PCBs) distributions in the bay of Marmara sea: Izmit bay. Environmental Pollution, 119, 383–397.CrossRefGoogle Scholar
  55. Thomas, R. E., Lindeberg, M., Harris, P. M., & Rice, S. D. (2007). Induction of DNA strand breaks in the mussel (Mytilus trossulus) and clam (Protothaca staminea) following chronic field exposure to polycyclic aromatic hydrocarbons from the Exxon Valdez spill. Marine Pollution Bulletin, 54, 726–732.CrossRefGoogle Scholar
  56. Vlahogianni, T., Dassenakis, M., Scoullos, M. J., & Valavanidis, A. (2007). Integrated use of biomarkers (superoxide dismutase, catalase and lipid peroxidation) in mussels Mytilus galloprovincialis for assessing heavy metals’ pollution in coastal areas from the Saronikos gulf of Greece. Marine Pollution Bulletin, 54, 1361–1371.CrossRefGoogle Scholar
  57. Wessel, N., Santos, R., Menard, D., Le Menach, K., Buchet, V., Lebayon, N., et al. (2010). Relationship between PAH biotransformation as measured by biliary metabolites and EROD activity, and genotoxicity in juveniles of sole (Solea solea). Marine Environmental Research. doi:10.1016/j.marenvres.2010.03.004.
  58. Wootton, E. C., Dyrynda, E. A., Pipe, R. K., & Ratcliffe, N. A. (2003). Comparisons of PAH-induced immunomodulation in three bivalve molluscs. Aquatic Toxicology, 65, 13–25.CrossRefGoogle Scholar
  59. Yunker, M. B., Macdonald, R. W., Vingarzan, R., Mitchell, R. H., Goyette, D., & Sylvestre, S. (2002). PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry, 33, 489–515CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Juan Fernández-Tajes
    • 1
  • Fernanda Flórez
    • 1
  • Sandra Pereira
    • 1
  • Tamara Rábade
    • 1
  • Blanca Laffon
    • 2
  • Josefina Méndez
    • 1
  1. 1.Department of Cell and Molecular Biology, Faculty of SciencesUniversity of A CoruñaA CoruñaSpain
  2. 2.Toxicology Unit, Department of PhsycobiologyUniversity of A CoruñaA CoruñaSpain

Personalised recommendations